Spaces:
Build error
Build error
File size: 6,715 Bytes
6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb 44a9d55 6c25ddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import json
import argparse
import re
from copy import deepcopy
from tqdm import tqdm
from utils import find_head, WhitespaceTokenizer, find_arg_span
import spacy
print("convert_gen_to_output2.py")
def extract_args_from_template(ex, template, ontology_dict,):
# extract argument text
template_words = template[0].strip().split()
predicted_words = ex['predicted'].strip().split()
predicted_args = {}
t_ptr= 0
p_ptr= 0
evt_type = get_event_type(ex)[0]
while t_ptr < len(template_words) and p_ptr < len(predicted_words):
if re.match(r'<(arg\d+)>', template_words[t_ptr]):
m = re.match(r'<(arg\d+)>', template_words[t_ptr])
arg_num = m.group(1)
arg_name = ontology_dict[evt_type.replace('n/a','unspecified')][arg_num]
if predicted_words[p_ptr] == '<arg>':
# missing argument
p_ptr +=1
t_ptr +=1
else:
arg_start = p_ptr
while (p_ptr < len(predicted_words)) and (predicted_words[p_ptr] != template_words[t_ptr+1]):
p_ptr+=1
arg_text = predicted_words[arg_start:p_ptr]
predicted_args[arg_name] = arg_text
t_ptr+=1
# aligned
else:
t_ptr+=1
p_ptr+=1
return predicted_args
def get_event_type(ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append( t[0])
return evt_type
def check_coref(ex, arg_span, gold_spans):
for clus in ex['corefs']:
if arg_span in clus:
matched_gold_spans = [span for span in gold_spans if span in clus]
if len(matched_gold_spans) > 0:
return matched_gold_spans[0]
return arg_span
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gen-file',type=str, default='checkpoints/gen-new-tokenization-pred/sample_predictions.jsonl')
parser.add_argument('--test-file', type=str,default='data/RAMS_1.0/data/test_head.jsonlines')
parser.add_argument('--output-file',type=str, default='test_output.jsonl')
parser.add_argument('--ontology-file',type=str, default='aida_ontology_new.csv')
parser.add_argument('--head-only',action='store_true',default=False)
parser.add_argument('--coref', action='store_true', default=False)
args = parser.parse_args()
nlp = spacy.load('en_core_web_sm')
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab)
# read ontology 读取事件本体 模板文件中的内容
ontology_dict ={}
with open('aida_ontology_new.csv','r') as f:
for lidx, line in enumerate(f):
# 跳过第一行表头字段
if lidx == 0:# header
continue
fields = line.strip().split(',')
# 说明该事件类型下不存在待抽取的论元
if len(fields) < 2:
break
# 事件类型是第一个
evt_type = fields[0]
# 从第三个元素往后都是待抽取论语及其论元角色
arguments = fields[2:]
# 获取该事件类型下带带抽取的论元数量
args_len = 0
for i, arg in enumerate(arguments):
if arg != '':
args_len = args_len + 1
# 将事件本体字典中添加事件类型的key,该key下对应的value为模板
# 利用args_len将template中的子模板数量进行循环增加, 将后续的子模板通过字符串拼接的方式进行增加
# 最终的模板样式变为 what is the <arg1> in <trg> what is the <arg2> in <trg>
# 先利用一个临时的字符串变量来存储模板 ----------> temp_template
temp_template = []
for i in range(len(arguments)):
temp_template.append(" what is the <arg{}> in <trg>".format(i + 1))
print(temp_template)
# 在事件本体字典中建立key-value 以事件类型为关键字
ontology_dict[evt_type] = {
'template': temp_template
}
for i, arg in enumerate(arguments):
if arg !='':
ontology_dict[evt_type]['arg{}'.format(i+1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i+1)
examples = {}
print(args.gen_file)
# data/RAMS_1.0/data/test_head_coref.jsonlines
with open(args.test_file, 'r') as f:
for line in f:
ex = json.loads(line.strip())
ex['ref_evt_links'] = deepcopy(ex['gold_evt_links'])
ex['gold_evt_links'] = []
examples[ex['doc_key']] =ex
# checkpoints/gen-RAMS-pred/predictions.jsonl
with open(args.gen_file,'r') as f:
for line in f:
pred = json.loads(line.strip())
# print(pred)
examples[pred['doc_key']]['predicted'] = pred['predicted']
examples[pred['doc_key']]['gold'] = pred['gold']
# checkpoints/gen-RAMS-pred/out_put.jsonl
writer = open(args.output_file, 'w')
for ex in tqdm(examples.values()):
if 'predicted' not in ex:# this is used for testing
continue
# get template
evt_type = get_event_type(ex)[0]
context_words = [w for sent in ex['sentences'] for w in sent ]
template = ontology_dict[evt_type.replace('n/a','unspecified')]['template']
# extract argument text
predicted_args = extract_args_from_template(ex,template, ontology_dict)
# get trigger
# extract argument span
trigger_start = ex['evt_triggers'][0][0]
trigger_end = ex['evt_triggers'][0][1]
doc = None
if args.head_only:
doc = nlp(' '.join(context_words))
for argname in predicted_args:
arg_span = find_arg_span(predicted_args[argname], context_words,
trigger_start, trigger_end, head_only=args.head_only, doc=doc)
if arg_span:# if None means hullucination
if args.head_only and args.coref:
# consider coreferential mentions as matching
assert('corefs' in ex)
gold_spans = [a[1] for a in ex['ref_evt_links'] if a[2]==argname]
arg_span = check_coref(ex, list(arg_span), gold_spans)
ex['gold_evt_links'].append([[trigger_start, trigger_end], list(arg_span), argname])
writer.write(json.dumps(ex)+'\n')
writer.close()
|