Spaces:
Build error
Build error
File size: 16,112 Bytes
44a9d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import re
from copy import deepcopy
import transformers
from transformers import BartTokenizer
import jsonlines
import json
# dict = {"rel_triggers": [], "gold_rel_links": [], "doc_key": "nw_RC00c8620ef5810429342a1c339e6c76c1b0b9add3f6010f04482fd832", "ent_spans": [[27, 27, [["evt043arg01communicator", 1.0]]], [48, 48, [["evt043arg03place", 1.0]]], [32, 36, [["evt043arg02recipient", 1.0]]]], "language_id": "eng", "source_url": "http://bbc.co.uk/sport/athletics/36295481", "evt_triggers": [[31, 31, [["contact.prevarication.broadcast", 1.0]]]], "split": "test", "sentences": [["We", "are", "ashamed", "of", "them", ".", "\""], ["However", ",", "Mutko", "stopped", "short", "of", "admitting", "the", "doping", "scandal", "was", "state", "sponsored", "."], ["\"", "We", "are", "very", "sorry", "that", "athletes", "who", "tried", "to", "deceive", "us", ",", "and", "the", "world", ",", "were", "not", "caught", "sooner", "."], ["We", "are", "very", "sorry", "because", "Russia", "is", "committed", "to", "upholding", "the", "highest", "standards", "in", "sport", "and", "is", "opposed", "to", "anything", "that", "threatens", "the", "Olympic", "values", ",", "\"", "he", "said", "."], ["English", "former", "heptathlete", "and", "Athens", "2004", "bronze", "medallist", "Kelly", "Sotherton", "was", "unhappy", "with", "Mutko", "'s", "plea", "for", "Russia", "'s", "ban", "to", "be", "lifted", "for", "Rio"]], "gold_evt_links": [[[31, 31], [27, 27], "evt043arg01communicator"], [[31, 31], [32, 32], "evt043arg02recipient"], [[31, 31], [48, 48], "evt043arg03place"]], "clusters": [[[0, 0], [22, 22], [32, 32], [43, 43], [48, 48], [90, 91]], [[9, 9], [70, 70], [86, 87]]], "corefs": [[[0, 0], [22, 22], [32, 32], [43, 43], [48, 48], [90, 90]], [[9, 9], [70, 70], [86, 86]]]}
#
# template = "what is the <arg>"
#
# context_words = [w for sent in dict['sentences'] for w in sent]
#
# argtext = context_words[27]
#
# print(argtext)
#
# template = re.sub('<arg>', argtext, template)
#
# print(template)
# for lidx, triple in enumerate(dict['gold_evt_links']):
# # 触发词 论元 论元
# # 例子: "gold_evt_links":
# # [[[40, 40], [33, 33], "evt089arg01victim"],
# # [[40, 40], [28, 28], "evt089arg02place"]]
# trigger_span, argument_span, arg_name = triple
# # 第几个论元
# arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
# # 具体论元内容 短语
# arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
# # 通过正则表达式的方式将模板中的每个<arg> 替换为具体的论元内容
# # 按照顺序将列表中的<arg>依次替换为
# template[lidx] = re.sub('<{}>'.format(arg_num), arg_text, template[lidx])
# # "ent_spans": [[27, 27, [["evt043arg01communicator", 1.0]]],
# # [48, 48, [["evt043arg03place", 1.0]]],
# # [32, 36, [["evt043arg02recipient", 1.0]]]]
# context_words = [w for sent in dict['sentences'] for w in sent]
#
# print(context_words[32])
# print(context_words[33])
# print(context_words[34])
# print(context_words[35])
# print(context_words[36])
def get_event_type(ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append(t[0])
return evt_type
def create_gold_gen(ex, ontology_dict, mark_trigger=True):
# 设置三个总列表、存放输入模板、输出模板
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
OUTPUT = []
CONTEXT = []
evt_type = get_event_type(ex)[0]
context_words = [w for sent in ex['sentences'] for w in sent]
# print(context_words[48])
input_template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
i = len(input_template)
input_list = []
for x in range(i):
str = re.sub(r'<arg\d>', '<arg>', input_template[x])
input_list.append(str)
# 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
# temp = []
for x in range(i):
space_tokenized_template = input_list[x].split(' ')
INPUT.append(space_tokenized_template)
space_tokenized_template = []
# 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
tokenized_input_template = []
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
temp = []
for x in range(len(INPUT)):
for w in INPUT[x]:
tokenized_input_template.extend(tokenizer.tokenize(w, add_prefix_space=True))
# print(tokenized_input_template)
temp.append(tokenized_input_template)
tokenized_input_template = []
print(temp)
break
template = ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
# if ex['doc_key'] == 'nw_RC04992035300b2ec94d8692646a28dc8b5f210c94842d20834c5342df':
# print('bbb')
# ['<arg1> was injured by injurer with medical issue at place',
# 'Victim was injured by <arg2> with medical issue at place',
# 'Victim was injured by injurer with medical issue at <arg3> place',
# 'Victim was injured by injurer with <arg4> medical issue at place']
# print(template)
for lidx, triple in enumerate(ex['gold_evt_links']):
# 触发词 论元 论元
# 例子: "gold_evt_links":
# [[50, 50], [48, 48], 'evt092arg01victim']
# [[50, 50], [7, 7], 'evt092arg03place']
trigger_span, argument_span, arg_name = triple
if ex['doc_key'] == 'nw_RC013c8e78b7e8a4fb22193483877058f712dfd8b75b7a06d950de0b8f':
print(len(ex['gold_evt_links']))
# 第几个论元
arg_num = ontology_dict[evt_type.replace('n/a', 'unspecified')][arg_name]
# 具体论元内容 短语
arg_text = ' '.join(context_words[argument_span[0]:argument_span[1] + 1])
# if ex['doc_key'] == 'nw_RC04992035300b2ec94d8692646a28dc8b5f210c94842d20834c5342df':
# print(arg_num)
# print(arg_text)
# print(arg_text)
# 通过正则表达式的方式将模板中的每个<arg> 替换为具体的论元内容
# 搜索templat中的arg_num 找到对应的序列
# INDEX = 0
for index in range(len(template)):
if arg_num in template[index]:
break
else:
continue
# INDEX += 1
template[index] = re.sub('<{}>'.format(arg_num), arg_text, template[index])
if ex['doc_key'] == 'nw_RC013c8e78b7e8a4fb22193483877058f712dfd8b75b7a06d950de0b8f':
print('aaa')
print(template)
trigger = ex['evt_triggers'][0]
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context_words)
output_template = []
# 此时的template中已经全部替换为论元短语 这部是将<arg1> 替换为<arg>
for i in range(len(template)):
output_template.append(re.sub(r'<arg\d>', '<arg>', template[i]))
# spaceout_tokenized_template = []
for i in range(len(output_template)):
OUTPUT.append(output_template[i].split(' '))
# tokenized_out_template = []
# for i in range(len(spaceout_tokenized_template)):
# for w in spaceout_tokenized_template[i]:
# tokenized_out_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
# OUTPUT.append(tokenized_out_template)
# tokenized_out_template = []
return INPUT, OUTPUT, CONTEXT
def load_ontology():
ontology_dict = {}
with open('aida_ontology_fj-5.csv', 'r') as f:
for lidx, line in enumerate(f):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
if evt_type in ontology_dict.keys():
# 得到该事件类型下的所有论元类型
args = fields[2:]
# 将该事件类型对应的模板中的论元模板 填充到onto_logy字典中
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
# 事件类型下添加字典一项 arg1的值为arg
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
# 即扫描到的事件类型在 evt_type_dict.keys() 还未存在过
else:
# 建立该事件类型的key
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
# 事件类型下添加字典一项 arg1的值为arg
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data():
ontology_dict = load_ontology()
# ('train', './data/RAMS_1.0/data/train.jsonlines'),
# ('test', './data/RAMS_1.0/data/test_head_coref.jsonlines')
for split, f in [('val', './data/RAMS_1.0/data/dev.jsonlines'),('train', './data/RAMS_1.0/data/train.jsonlines'),
('test', './data/RAMS_1.0/data/test_head_coref.jsonlines')]:
# , open('head_templates_preprocessed_data/{}.jsonl'.format(split), 'w') as writer
with open(f, 'r') as reader:
# print(ontology_dict['contact.prevarication.broadcast'])
for lidx, line in enumerate(reader):
ex = json.loads(line.strip())
# print(lidx)
# print(ex)
event_type = get_event_type(ex)[0]
if ex['doc_key'] == 'nw_RC013c8e78b7e8a4fb22193483877058f712dfd8b75b7a06d950de0b8f':
# {'rel_triggers': [], 'gold_rel_links': [],
# 'doc_key': 'nw_RC04992035300b2ec94d8692646a28dc8b5f210c94842d20834c5342df',
# 'ent_spans': [[48, 48, [['evt092arg01victim', 1.0]]], [7, 7, [['evt092arg03place', 1.0]]]],
# 'language_id': 'eng',
# 'source_url': 'http://news.sky.com/story/attack-in-nice-truck-ploughes-into-crowd-10502068',
# 'evt_triggers': [[50, 50, [['life.injure.n/a', 1.0]]]], 'split': 'test',
# 'sentences': [[':', ':', 'History', 'Of', 'Deadly', 'Attacks', 'In', 'France'],
# ['One', ',', 'Laurence', 'Olding', ',', 'was', 'with', 'his', 'fiance', 'and',
# 'jumped', 'over', 'a', 'promenade', 'wall', 'onto', 'the', 'concrete', 'below',
# 'to', 'avoid', 'the', 'truck', '.'],
# ['Emerging', 'from', 'hospital', 'in', 'bandages', 'he', 'said', ':', '"', 'There',
# 'was', 'debris', 'in', 'the', 'streets', ',', 'people', 'lying', 'injured', 'or',
# 'dead', 'in', 'the', 'road', '.', '"'],
# ['Video', ':', 'Hollande', 'On', "'", 'Horror', "'", 'Of', 'Attack'],
# ['Two', 'Americans', '-', 'Sean', 'Copeland', 'and', 'his', '11-year', '-', 'old',
# 'son', 'Brodie', 'from', 'Texas', '-', 'have', 'been', 'confirmed', 'among', 'the',
# 'dead', ',', 'a', 'US', 'official', 'said', '.']],
# 'gold_evt_links': [[[50, 50], [48, 48], 'evt092arg01victim'],
# [[50, 50], [7, 7], 'evt092arg03place']],
# 'clusters': [[[10, 11], [15, 15], [37, 37]], [[70, 71], [73, 73]]],
# 'corefs': [[[11, 11], [15, 15], [37, 37]], [[71, 71], [73, 73]]]}
print(ex)
# {'template': ['<arg1> was injured by injurer with medical issue at place',
# 'Victim was injured by <arg2> with medical issue at place',
# 'Victim was injured by injurer with medical issue at <arg3> place',
# 'Victim was injured by injurer with <arg4> medical issue at place'],
# 'arg1': 'evt092arg01victim', 'evt092arg01victim': 'arg1', 'arg2': 'evt092arg02injurer',
# 'evt092arg02injurer': 'arg2', 'arg3': 'evt092arg03place', 'evt092arg03place': 'arg3',
# 'arg4': 'evt092arg04medicalissue', 'evt092arg04medicalissue': 'arg4'}
print(ontology_dict[event_type.replace('n/a','unspecified')])
input_template, output_template, context = create_gold_gen(ex, ontology_dict,
True)
ontology_dict = load_ontology()
if ex['doc_key'] == 'nw_RC013c8e78b7e8a4fb22193483877058f712dfd8b75b7a06d950de0b8f':
# [['<arg>', 'was', 'injured', 'by', 'injurer', 'with', 'medical', 'issue', 'at', 'place'],
# ['Victim', 'was', 'injured', 'by', '<arg>', 'with', 'medical', 'issue', 'at', 'place'],
# ['Victim', 'was', 'injured', 'by', 'injurer', 'with', 'medical', 'issue', 'at', '<arg>', 'place'],
# ['Victim', 'was', 'injured', 'by', 'injurer', 'with', '<arg>', 'medical', 'issue', 'at', 'place']]
print(input_template)
# [['people', 'was', 'injured', 'by', 'injurer', 'with', 'medical', 'issue', 'at', 'place'],
# ['Victim', 'was', 'injured', 'by', '<arg>', 'with', 'medical', 'issue', 'at', 'place'],
# ['Victim', 'was', 'injured', 'by', 'injurer', 'with', 'medical', 'issue', 'at', '<arg>', 'place'],
# ['Victim', 'was', 'injured', 'by', 'injurer', 'with', '<arg>', 'medical', 'issue', 'at', 'place']]
print(output_template)
# print(input_template)
# 4 4 4
# print(len(input_template))
# print(len(output_template))
# print(len(context))
[[':', ':', 'History', 'Of', 'Deadly', 'Attacks', 'In', 'France'],
['One', ',', 'Laurence', 'Olding', ',', 'was', 'with', 'his', 'fiance', 'and', 'jumped', 'over', 'a', 'promenade', 'wall', 'onto', 'the', 'concrete', 'below', 'to', 'avoid', 'the', 'truck', '.'],
['Emerging', 'from', 'hospital', 'in', 'bandages', 'he', 'said', ':', '"', 'There', 'was', 'debris', 'in', 'the', 'streets', ',', 'people', 'lying', 'injured', 'or', 'dead', 'in', 'the', 'road', '.', '"'],
['Video', ':', 'Hollande', 'On', "'", 'Horror', "'", 'Of', 'Attack'],
['Two', 'Americans', '-', 'Sean', 'Copeland', 'and', 'his', '11-year', '-', 'old', 'son', 'Brodie', 'from', 'Texas', '-', 'have', 'been', 'confirmed', 'among', 'the', 'dead', ',', 'a', 'US', 'official', 'said', '.']]
[':', ':', 'History', 'Of', 'Deadly', 'Attacks', 'In', 'France',
'One', ',', 'Laurence', 'Olding', ',', 'was', 'with', 'his', 'fiance', 'and', 'jumped', 'over', 'a', 'promenade', 'wall', 'onto', 'the', 'concrete', 'below', 'to', 'avoid', 'the', 'truck', '.',
'Emerging', 'from', 'hospital', 'in', 'bandages', 'he', 'said', ':', '"', 'There', 'was', 'debris', 'in', 'the', 'streets', ',', 'people', 'lying', 'injured', 'or', 'dead', 'in', 'the', 'road', '.', '"',
'Video', ':', 'Hollande', 'On', "'", 'Horror', "'", 'Of', 'Attack',
'Two', 'Americans', '-', 'Sean', 'Copeland', 'and', 'his', '11-year', '-', 'old', 'son', 'Brodie', 'from', 'Texas', '-', 'have', 'been', 'confirmed', 'among', 'the', 'dead', ',', 'a', 'US', 'official', 'said', '.']
prepare_data()
|