Spaces:
Build error
Build error
File size: 21,889 Bytes
4bb803b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import difflib
import os
import json
from tqdm import tqdm
from glob import glob
#
# if not os.path.exists('./evttgr2type.json'):
# for file_name in glob('data/RAMS_1.0/data/test.jsonlines'):
# dic = {}
# with open(file_name,'r',encoding='utf-8') as f:
# lines = f.readlines()
# for line in tqdm(lines):
# linej = json.loads(line.strip())
# evt_triggers = linej['evt_triggers']
# # print(evt_triggers)
# sentences = linej['sentences']
# # print(sentences)
# sentences_uni = []
# for s in sentences:
# sentences_uni += s
# print(' '.join(sentences_uni))
# triggers = ' '.join(sentences_uni[evt_triggers[0][0]:evt_triggers[0][1]+1])
# evt_type = evt_triggers[0][2][0][0]
# if triggers in dic:
# if dic[triggers] != evt_type:
# print('一个触发词有不同的事件类型: {} {} {}'.format(triggers,evt_type,dic[triggers]))
# dic[triggers] = evt_type
# print(evt_type, triggers)
# exit()
import argparse
import jsonlines
import torch
from src.genie.data import my_collate
from src.genie.data_module_w import RAMSDataModule
from src.genie.model import GenIEModel
import gradio as gr
import re
from transformers import BartTokenizer
MAX_LENGTH = 424
MAX_TGT_LENGTH = 72
DOC_STRIDE = 256
class DataModule4():
def __init__(self, ontology_file):
super().__init__()
self.ontology_file = ontology_file
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>', ' <tgr>'])
self.ontology_dict = self.load_ontology()
def create_gold_gen(self, context_words, evt_type, trigger):
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
CONTEXT = []
input_template = self.ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
i = len(input_template)
input_list = []
for x in range(i):
str = re.sub(r'<arg\d>', '<arg>', input_template[x])
input_list.append(str)
# 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
temp = []
for x in range(i):
space_tokenized_template = input_list[x].split(' ')
temp.append(space_tokenized_template)
# 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
tokenized_input_template = []
for x in range(len(temp)):
for w in temp[x]:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
INPUT.append(tokenized_input_template)
tokenized_input_template = []
context_words = context_words.split(' ')
trigger_words = trigger.split(' ')
trigger_span_start = context_words.index(trigger_words[0])
trigger_span_end = context_words.index(trigger_words[-1])
# 触发词之前的单词
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger_span_start]), add_prefix_space=True)
# 触发词短语
tgt = self.tokenizer.tokenize(trigger, add_prefix_space=True)
# 触发词之后的单词
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger_span_end+1:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
# context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context)
return INPUT, CONTEXT
def load_ontology(self):
ontology_dict = {}
with open(self.ontology_file, 'r') as f:
for lidx, line in enumerate(f):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
if evt_type in ontology_dict.keys():
args = fields[2:]
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
else:
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data(self, sentences, evt_type, trigger):
input_template, context = self.create_gold_gen(sentences, evt_type, trigger)
length = len(input_template)
# print(input_template)
# print(context)
results = []
for i in range(length):
input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
# input_ids 单词在词典中的编码
results.append(input_tokens['input_ids'])
temp = self.ontology_dict[evt_type.replace('n/a', 'unspecified')]
return results, temp
class DataModuleW():
def __init__(self, ontology_file):
super().__init__()
self.ontology_file = ontology_file
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>', ' <tgr>'])
self.ontology_dict = self.load_ontology()
def create_gold_gen(self, context_words, evt_type, trigger):
# 设置三个总列表、存放输入模板、输出模板
INPUT = []
CONTEXT = []
input_template = self.ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
i = len(input_template)
input_list = []
for x in range(i):
str = re.sub('<trg>', trigger, input_template[x])
str = re.sub('<trg>', trigger, str)
input_list.append(str)
# 其中input_list种存放的是 原始数据中<arg1> 全部替换为 <arg> 之后的模板 下一步应该进行分词
temp = []
for x in range(i):
space_tokenized_template = input_list[x].split(' ')
temp.append(space_tokenized_template)
# 其中temp中存放的都是分词后的模板 下一步对temp中的所有元素进行tokenize
tokenized_input_template = []
for x in range(len(temp)):
for w in temp[x]:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
INPUT.append(tokenized_input_template)
tokenized_input_template = []
template = self.ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']
for y in range(len(template)):
template[y] = re.sub('<trg>', trigger, template[y])
context = self.tokenizer.tokenize(context_words, add_prefix_space=True)
# 将context放入CONTEXT中
for w in range(i):
CONTEXT.append(context)
return INPUT, CONTEXT
def load_ontology(self):
ontology_dict = {}
with open(self.ontology_file, 'r') as f:
for lidx, line in tqdm(enumerate(f)):
if lidx == 0: # header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
if evt_type in ontology_dict.keys():
args = fields[2:]
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
else:
ontology_dict[evt_type] = {}
args = fields[2:]
ontology_dict[evt_type]['template'] = []
ontology_dict[evt_type]['template'].append(fields[1])
for i, arg in enumerate(args):
if arg != '':
ontology_dict[evt_type]['arg{}'.format(i + 1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i + 1)
return ontology_dict
def prepare_data(self, sentences, evt_type, trigger):
input_template, context = self.create_gold_gen(sentences, evt_type, trigger)
length = len(input_template)
# print(input_template)
# print(output_template)
# print(context)
results = []
for i in range(length):
input_tokens = self.tokenizer.encode_plus(input_template[i], context[i],
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
# input_ids 单词在词典中的编码
results.append(input_tokens['input_ids'])
temp = self.ontology_dict[evt_type.replace('n/a', 'unspecified')]
return results, temp
class Runner():
def __init__(self, load_ckpt = 'checkpoints/gen-RAMS-what-new-span/epoch=2-v0.ckpt'):
model = 'gen'
self.ckpt_name = 'gen-RAMS-pred'
self.load_ckpt = load_ckpt
self.dataset = 'RAMS'
self.eval_only = True
self.train_file = 'data/RAMS_1.0/data/train.jsonlines'
self.val_file = 'data/RAMS_1.0/data/dev.jsonlines'
self.test_file = 'data/RAMS_1.0/data/test.jsonlines'
self.train_batch_size = 2
self.eval_batch_size = 4
self.learning_rate = 3e-5
self.accumulate_grad_batches = 4
self.num_train_epochs = 3
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model",
type=str,
default=model
)
parser.add_argument(
"--dataset",
type=str,
default=self.dataset
)
parser.add_argument('--tmp_dir', type=str)
parser.add_argument(
"--ckpt_name",
default=self.ckpt_name,
type=str,
help="The output directory where the model checkpoints and predictions will be written.",
)
parser.add_argument(
"--load_ckpt",
default=self.load_ckpt,
type=str,
)
parser.add_argument(
"--train_file",
default=self.train_file,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--val_file",
default=self.val_file,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
'--test_file',
type=str,
default=self.test_file,
)
parser.add_argument('--input_dir', type=str, default=None)
parser.add_argument('--coref_dir', type=str, default='data/kairos/coref_outputs')
parser.add_argument('--use_info', action='store_true', default=False,
help='use informative mentions instead of the nearest mention.')
parser.add_argument('--mark_trigger', action='store_true')
parser.add_argument('--sample-gen', action='store_true', help='Do sampling when generation.')
parser.add_argument("--train_batch_size", default=self.train_batch_size, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--eval_batch_size", default=self.eval_batch_size, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=self.learning_rate, type=float,
help="The initial learning rate for Adam.")
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=self.accumulate_grad_batches,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--gradient_clip_val", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=self.num_train_epochs, type=int,
help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--gpus", default=None, help='-1 means train on all gpus')
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument("--threads", type=int, default=1,
help="multiple threads for converting example to features")
self.args = parser.parse_args()
self.model = GenIEModel(self.args)
self.model.load_state_dict(torch.load(self.args.load_ckpt, map_location=self.model.device)['state_dict'])
def pred(self,input):
x = torch.stack([torch.LongTensor(u) for u in input])
return self.model.pred(x)
print('Loading data...')
dm1 = DataModule4('aida_ontology_cleaned.csv')
dm2 = DataModuleW('aida_ontology_fj-w-2.csv')
dm3 = DataModuleW('aida_ontology_fj-w-3.csv')
dm4 = DataModule4('aida_ontology_fj-5.csv')
print('Loading Model 1...')
runner1 = Runner('checkpoints/gen-RAMS-1-span/epoch=2-v1.ckpt')
print('Loading Model 2...')
runner2 = Runner('checkpoints/gen-RAMS-2-span/epoch=2-v0.ckpt')
print('Loading Model 3...')
runner3 = Runner('checkpoints/gen-RAMS-3-span/epoch=2-v0.ckpt')
print('Loading Model 4...')
runner4 = Runner('checkpoints/gen-RAMS-4-span/epoch=2-v0.ckpt')
def handle(sentences,trigger, temp=3, evt_type='contact.prevarication.broadcast'):
x, argnames = eval('dm{}.prepare_data(sentences,evt_type,trigger)'.format(temp+1))
ys = eval('runner{}.pred(x)'.format(temp+1))
print(ys)
results = []
for y in ys:
while ' ' in y:
y = y.replace(' ', ' ')
result = y.strip(' ').split(' ')
results.append(result)
print(results)
argss = []
temp = 'trigger: ' + trigger
argss.append(temp)
# print(argnames)
for n,template in enumerate(argnames['template']):
template = template.split(' ')
# print(template)
args = []
for i, w in enumerate(template):
if '<arg' in w:
m = re.match(r'evt\d+arg\d+(\w+)', argnames[re.match(r'<(\w+)>', w).group(1)])
if m:
label = m.group(1)
if results[n][i] == '<arg>':
args.append(label+': None')
else:
args.append(label+': '+results[n][i])
argss.append(', '.join(args))
#print(argss)
if len(argnames['template']) == 1:
temp = argss[1].split(',')
rs = []
rs.append(argss[0])
for i in temp:
rs.append(i)
argss = rs
return '\n'.join(argss)
if __name__ == "__main__":
# trigger = 'deceive'
# sentences = """We are ashamed of them . " However , Mutko stopped short of admitting the doping scandal was state sponsored . " We are very sorry that athletes who tried to deceive us , and the world , were not caught sooner . We are very sorry because Russia is committed to upholding the highest standards in sport and is opposed to anything that threatens the Olympic values , " he said . English former heptathlete and Athens 2004 bronze medallist Kelly Sotherton was unhappy with Mutko 's plea for Russia 's ban to be lifted for Rio"""
# print(handle(sentences, trigger))
dm_key = list(dm1.ontology_dict.keys())
print(len(dm_key))
def get_tmp(index,evt_type):
if index is None or evt_type is None:
return ''
input_template = eval("dm{}.ontology_dict[evt_type.replace('n/a', 'unspecified')]['template']".format(index+1))
return '\n'.join(input_template)
with gr.Blocks() as demo:
with gr.Row().style(equal_height=False):
with gr.Column(variant="panel"):
stens = gr.Text(label='文档')
evt_type = gr.Dropdown(choices=dm_key, label='事件类型')
trigger = gr.Text(label='触发词')
temp = gr.Dropdown(choices=['基础模板', '简单子模板', '融入语义信息的子模板', '融入论元信息的子模板'],
type='index', value='基础模板', label='模板')
output_tmp = gr.Text(label='模板内容')
btn = gr.Button("Run")
input_examples = gr.Examples(examples=[["We are ashamed of them.\" However , Mutko stopped short of admitting the doping scandal was state sponsored . \"We are very sorry that athletes who tried to deceive us, and the world, were not caught sooner.We are very sorry because Russia is committed to upholding the highest standards in sport and is opposed to anything that threatens the Olympic values, \" he said . English former heptathlete and Athens 2004 bronze medallist Kelly Sotherton was unhappy with Mutko 's plea for Russia 's ban to be lifted for Rio","deceive", "基础模板","contact.prevarication.broadcast"],["We are ashamed of them.\" However , Mutko stopped short of admitting the doping scandal was state sponsored . \"We are very sorry that athletes who tried to deceive us, and the world, were not caught sooner.We are very sorry because Russia is committed to upholding the highest standards in sport and is opposed to anything that threatens the Olympic values, \" he said . English former heptathlete and Athens 2004 bronze medallist Kelly Sotherton was unhappy with Mutko 's plea for Russia 's ban to be lifted for Rio","deceive", "简单子模板", "contact.prevarication.broadcast"],["We are ashamed of them.\" However , Mutko stopped short of admitting the doping scandal was state sponsored . \"We are very sorry that athletes who tried to deceive us, and the world, were not caught sooner.We are very sorry because Russia is committed to upholding the highest standards in sport and is opposed to anything that threatens the Olympic values, \" he said . English former heptathlete and Athens 2004 bronze medallist Kelly Sotherton was unhappy with Mutko 's plea for Russia 's ban to be lifted for Rio","deceive", "融入语义信息的子模板", "contact.prevarication.broadcast"],["We are ashamed of them.\" However , Mutko stopped short of admitting the doping scandal was state sponsored . \"We are very sorry that athletes who tried to deceive us, and the world, were not caught sooner.We are very sorry because Russia is committed to upholding the highest standards in sport and is opposed to anything that threatens the Olympic values, \" he said . English former heptathlete and Athens 2004 bronze medallist Kelly Sotherton was unhappy with Mutko 's plea for Russia 's ban to be lifted for Rio","deceive", "融入论元信息的子模板", "contact.prevarication.broadcast"]],inputs=[stens, trigger, temp, evt_type])
#btn = gr.Button("Run")
with gr.Column(variant="panel"):
result = gr.Text(label='输出论元生成结果')
evt_type.change(get_tmp,inputs=[temp,evt_type],outputs=[output_tmp])
temp.change(get_tmp,inputs=[temp,evt_type],outputs=[output_tmp])
btn.click(fn=handle, inputs=[stens,trigger,temp,evt_type], outputs=[result])
demo.launch(server_name='0.0.0.0',server_port=6006,share=True)
|