File size: 6,714 Bytes
6c25ddb
4bb803b
 
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bb803b
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
4bb803b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os 
import argparse
from sys import prefix 
import torch 
import logging 
import json 


import pytorch_lightning as pl 
from transformers import BartTokenizer, BartConfig
from transformers import AdamW, get_linear_schedule_with_warmup

from .network import BartGen
from .constrained_gen import BartConstrainedGen

logger = logging.getLogger(__name__)
print("model.py")
class GenIEModel(pl.LightningModule):
    def __init__(self, args):
        super().__init__() 
        self.hparams = args 
    

        self.config=BartConfig.from_pretrained('facebook/bart-large')
        self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
        self.tokenizer.add_tokens([' <arg>',' <tgr>'])

        
        if self.hparams.model=='gen':
            self.model = BartGen(self.config, self.tokenizer)
            self.model.resize_token_embeddings() 
        elif self.hparams.model == 'constrained-gen':
            self.model = BartConstrainedGen(self.config, self.tokenizer)
            self.model.resize_token_embeddings() 
        else:
            raise NotImplementedError



    def forward(self, inputs):
    
        return self.model(**inputs)


    def training_step(self, batch, batch_idx):
        '''
        processed_ex = {
                            'doc_key': ex['doc_key'],
                            'input_tokens_ids':input_tokens['input_ids'],
                            'input_attn_mask': input_tokens['attention_mask'],
                            'tgt_token_ids': tgt_tokens['input_ids'],
                            'tgt_attn_mask': tgt_tokens['attention_mask'],
                        }
        '''
        inputs = {
                    "input_ids": batch["input_token_ids"],
                    "attention_mask": batch["input_attn_mask"],
                    "decoder_input_ids": batch['tgt_token_ids'],
                    "decoder_attention_mask": batch["tgt_attn_mask"],   
                    "task": 0 
                }

        outputs = self.model(**inputs)
        loss = outputs[0]
        loss = torch.mean(loss)

        log = {
            'train/loss': loss, 
        } 
        return {
            'loss': loss, 
            'log': log 
        }
    

    def validation_step(self,batch, batch_idx):
        inputs = {
                    "input_ids": batch["input_token_ids"],
                    "attention_mask": batch["input_attn_mask"],
                    "decoder_input_ids": batch['tgt_token_ids'],
                    "decoder_attention_mask": batch["tgt_attn_mask"],  
                    "task" :0,   
                }
        outputs = self.model(**inputs)
        loss = outputs[0]
        loss = torch.mean(loss)

       
        
        return loss  

    
    def validation_epoch_end(self, outputs):
        avg_loss = torch.mean(torch.stack(outputs))
        log = {
            'val/loss': avg_loss, 
        } 
        return {
            'loss': avg_loss, 
            'log': log 
        }
        
        
        

    def test_step(self, batch, batch_idx):
        if self.hparams.sample_gen:
            sample_output = self.model.generate(batch['input_token_ids'], do_sample=True, 
                                top_k=20, top_p=0.95, max_length=30, num_return_sequences=1,num_beams=1,
                            )
        else:
            sample_output = self.model.generate(batch['input_token_ids'], do_sample=False, 
                                max_length=30, num_return_sequences=1,num_beams=1,
                            )
        
        sample_output = sample_output.reshape(batch['input_token_ids'].size(0), 1, -1)
        doc_key = batch['doc_key'] # list 
        tgt_token_ids = batch['tgt_token_ids']

        return (doc_key, sample_output, tgt_token_ids)

    def test_epoch_end(self, outputs):
        # evaluate F1 
        with open('checkpoints/{}/predictions.jsonl'.format(self.hparams.ckpt_name),'w') as writer:
            for tup in outputs:
                for idx in range(len(tup[0])):
                    
                    pred = {
                        'doc_key': tup[0][idx],
                        'predicted': self.tokenizer.decode(tup[1][idx].squeeze(0), skip_special_tokens=True),
                        'gold': self.tokenizer.decode(tup[2][idx].squeeze(0), skip_special_tokens=True) 
                    }
                    writer.write(json.dumps(pred)+'\n')

        return {}

    def pred(self, batch):
        if self.hparams.sample_gen:
            sample_output = self.model.generate(batch, do_sample=True,
                                                top_k=20, top_p=0.95, max_length=30, num_return_sequences=1,
                                                num_beams=1,
                                                )
        else:
            sample_output = self.model.generate(batch, do_sample=False,
                                                max_length=30, num_return_sequences=1, num_beams=1,
                                                )

        sample_output = sample_output.reshape(batch.size(0), 1, -1)
        return [self.tokenizer.decode(sample.squeeze(0), skip_special_tokens=True) for sample in sample_output]


    def configure_optimizers(self):
        self.train_len = len(self.train_dataloader())
        if self.hparams.max_steps > 0:
            t_total = self.hparams.max_steps
            self.hparams.num_train_epochs = self.hparams.max_steps // self.train_len // self.hparams.accumulate_grad_batches + 1
        else:
            t_total = self.train_len // self.hparams.accumulate_grad_batches * self.hparams.num_train_epochs

        logger.info('{} training steps in total.. '.format(t_total)) 
        
        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
        # scheduler is called only once per epoch by default 
        scheduler =  get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total)
        scheduler_dict = {
            'scheduler': scheduler,
            'interval': 'step',
            'name': 'linear-schedule',
        }

        return [optimizer, ], [scheduler_dict,]