Bart-gen-arg / src /genie /KAIROS_data_module.py
adherent's picture
what is the <arg> in <trg>
6c25ddb
raw
history blame
12.9 kB
import os
import json
import re
import random
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
from .utils import load_ontology, check_pronoun, clean_mention
MAX_CONTEXT_LENGTH=400 # measured in words
MAX_LENGTH=512
MAX_TGT_LENGTH=70
print("KKkkkkkkk.py")
class KAIROSDataModule(pl.LightningDataModule):
'''
Dataset processing for KAIROS. Involves chunking for long documents.
'''
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>',' <tgr>'])
def create_gold_gen(self, ex, ontology_dict,mark_trigger=True, index=0, ent2info=None, use_info=False):
'''
If there are multiple events per example, use index parameter.
Input: <s> Template with special <arg> placeholders </s> </s> Passage </s>
Output: <s> Template with arguments and <arg> when no argument is found.
'''
if use_info and ent2info==None:
raise ValueError('entity to informative mention mapping required.')
evt_type = ex['event_mentions'][index]['event_type']
template = ontology_dict[evt_type]['template']
input_template = re.sub(r'<arg\d>', '<arg>', template)
space_tokenized_input_template = input_template.split()
tokenized_input_template = []
for w in space_tokenized_input_template:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
role2arg = defaultdict(list)
for argument in ex['event_mentions'][index]['arguments']:
role2arg[argument['role']].append(argument)
role2arg = dict(role2arg)
# create output template
arg_idx2text = defaultdict(list)
for role in role2arg.keys():
if role not in ontology_dict[evt_type]:
# annotation error
continue
for i, argument in enumerate(role2arg[role]):
use_arg = True
if use_info:
ent_id = argument['entity_id']
if ent_id in ent2info:
arg_text = clean_mention(ent2info[ent_id])
if check_pronoun(arg_text):
# skipping this argument
use_arg = False
# if arg_text != argument['text']:
# print('Original mention:{}, Informative mention:{}'.format(argument['text'], arg_text))
else:
arg_text = argument['text']
else:
arg_text = argument['text']
# assign the argument index
if i < len(ontology_dict[evt_type][role]):
# enough slots to fill in
arg_idx = ontology_dict[evt_type][role][i]
else:
# multiple participants for the same role
arg_idx = ontology_dict[evt_type][role][-1]
if use_arg:
arg_idx2text[arg_idx].append(arg_text)
for arg_idx, text_list in arg_idx2text.items():
text = ' and '.join(text_list)
template = re.sub('<{}>'.format(arg_idx), text, template)
trigger = ex['event_mentions'][index]['trigger']
offset = 0
# trigger span does not include last index
context_words = ex['tokens']
center_sent = trigger['sent_idx']
if len(context_words) > MAX_CONTEXT_LENGTH:
cur_len = len(ex['sentences'][center_sent][0])
context_words = [tup[0] for tup in ex['sentences'][center_sent][0]]
if cur_len > MAX_CONTEXT_LENGTH:
# one sentence is very long
trigger_start = trigger['start']
start_idx = max(0, trigger_start- MAX_CONTEXT_LENGTH//2 )
end_idx = min(len(context_words), trigger_start + MAX_CONTEXT_LENGTH //2 )
context_words = context_words[start_idx: end_idx]
offset = start_idx
else:
# take a sliding window
left = center_sent -1
right = center_sent +1
total_sents = len(ex['sentences'])
prev_len =0
while cur_len > prev_len:
prev_len = cur_len
# try expanding the sliding window
if left >= 0:
left_sent_tokens = [tup[0] for tup in ex['sentences'][left][0]]
if cur_len + len(left_sent_tokens) <= MAX_CONTEXT_LENGTH:
context_words = left_sent_tokens + context_words
left -=1
cur_len += len(left_sent_tokens)
if right < total_sents:
right_sent_tokens = [tup[0] for tup in ex['sentences'][right][0]]
if cur_len + len(right_sent_tokens) <= MAX_CONTEXT_LENGTH:
context_words = context_words + right_sent_tokens
right +=1
cur_len += len(right_sent_tokens)
# update trigger offset
offset = sum([len(ex['sentences'][idx][0]) for idx in range(left+1)])
assert(len(context_words) <= MAX_CONTEXT_LENGTH)
trigger['start'] = trigger['start'] - offset
trigger['end'] = trigger['end'] - offset
if mark_trigger:
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger['start']]), add_prefix_space=True)
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger['start']: trigger['end']]), add_prefix_space=True)
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger['end']:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
output_template = re.sub(r'<arg\d>','<arg>', template )
space_tokenized_template = output_template.split()
tokenized_template = []
for w in space_tokenized_template:
tokenized_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
return tokenized_input_template, tokenized_template, context
def prepare_data(self):
data_dir = 'preprocessed_{}'.format(self.hparams.dataset)
if not os.path.exists(data_dir):
os.makedirs(data_dir)
ontology_dict = load_ontology(self.hparams.dataset)
max_tokens = 0
max_tgt =0
for split,f in [('train',self.hparams.train_file), ('val',self.hparams.val_file), ('test',self.hparams.test_file)]:
coref_split = 'dev' if split=='val' else split
coref_reader = open(os.path.join(self.hparams.coref_dir, '{}.jsonlines'.format(coref_split)))
with open(f,'r') as reader, open(os.path.join(data_dir,'{}.jsonl'.format(split)), 'w') as writer:
for line, coref_line in zip(reader, coref_reader):
ex = json.loads(line.strip())
corefs = json.loads(coref_line.strip())
assert(ex['doc_id'] == corefs['doc_key'])
# mapping from entity id to information mention
ent2info = {}
for cidx, cluster in enumerate(corefs['clusters']):
for eid in cluster:
ent2info[eid] = corefs['informative_mentions'][cidx]
for i in range(len(ex['event_mentions'])):
if split=='train' and len(ex['event_mentions'][i]['arguments']) ==0:
# skip mentions with no arguments
continue
evt_type = ex['event_mentions'][i]['event_type']
if evt_type not in ontology_dict: # should be a rare event type
continue
input_template, output_template, context= self.create_gold_gen(ex, ontology_dict, self.hparams.mark_trigger,
index=i, ent2info=ent2info, use_info=self.hparams.use_info)
max_tokens = max(len(context) + len(input_template) +2, max_tokens)
# print(len(context) + len(input_template) +2 )
max_tgt = max(len(output_template) +1 , max_tgt)
assert(len(output_template) < MAX_TGT_LENGTH)
input_tokens = self.tokenizer.encode_plus(input_template, context,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
tgt_tokens = self.tokenizer.encode_plus(output_template,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
processed_ex = {
'event_idx': i,
'doc_key': ex['doc_id'],
'input_token_ids':input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
writer.write(json.dumps(processed_ex) + '\n')
print('longest context:{}'.format(max_tokens))
print('longest target {}'.format(max_tgt))
def train_dataloader(self):
dataset = IEDataset('preprocessed_{}/train.jsonl'.format(self.hparams.dataset))
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
dataset = IEDataset('preprocessed_{}/val.jsonl'.format(self.hparams.dataset))
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
dataset = IEDataset('preprocessed_{}/test.jsonl'.format(self.hparams.dataset))
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file',type=str,default='data/kairos/train.jsonl')
parser.add_argument('--val-file', type=str, default='data/kairos/dev.jsonl')
parser.add_argument('--test-file', type=str, default='data/kairos/test.jsonl')
parser.add_argument('--coref-dir', type=str, default='data/kairos/coref')
parser.add_argument('--use_info', action='store_true', default=True, help='use informative mentions instead of the nearest mention.')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--dataset', type=str, default='KAIROS')
parser.add_argument('--mark-trigger', action='store_true', default=True)
args = parser.parse_args()
dm = KAIROSDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break
# val dataloader