Spaces:
Build error
Build error
import os | |
import json | |
import argparse | |
import re | |
from copy import deepcopy | |
from tqdm import tqdm | |
from utils import find_head, WhitespaceTokenizer, find_arg_span | |
import spacy | |
print("convert_gen_to_output1.py") | |
def extract_args_from_template(ex, template, ontology_dict,): | |
# extract argument text | |
template_words = template.strip().split() | |
predicted_words = ex['predicted'].strip().split() | |
predicted_args = {} | |
t_ptr= 0 | |
p_ptr= 0 | |
evt_type = get_event_type(ex)[0] | |
while t_ptr < len(template_words) and p_ptr < len(predicted_words): | |
if re.match(r'<(arg\d+)>', template_words[t_ptr]): | |
m = re.match(r'<(arg\d+)>', template_words[t_ptr]) | |
arg_num = m.group(1) | |
arg_name = ontology_dict[evt_type.replace('n/a','unspecified')][arg_num] | |
if predicted_words[p_ptr] == '<arg>': | |
# missing argument | |
p_ptr +=1 | |
t_ptr +=1 | |
else: | |
arg_start = p_ptr | |
while (p_ptr < len(predicted_words)) and (predicted_words[p_ptr] != template_words[t_ptr+1]): | |
p_ptr+=1 | |
arg_text = predicted_words[arg_start:p_ptr] | |
predicted_args[arg_name] = arg_text | |
t_ptr+=1 | |
# aligned | |
else: | |
t_ptr+=1 | |
p_ptr+=1 | |
return predicted_args | |
def get_event_type(ex): | |
evt_type = [] | |
for evt in ex['evt_triggers']: | |
for t in evt[2]: | |
evt_type.append( t[0]) | |
return evt_type | |
def check_coref(ex, arg_span, gold_spans): | |
for clus in ex['corefs']: | |
if arg_span in clus: | |
matched_gold_spans = [span for span in gold_spans if span in clus] | |
if len(matched_gold_spans) > 0: | |
return matched_gold_spans[0] | |
return arg_span | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--gen-file',type=str, default='checkpoints/gen-new-tokenization-pred/sample_predictions.jsonl') | |
parser.add_argument('--test-file', type=str,default='data/RAMS_1.0/data/test_head.jsonlines') | |
parser.add_argument('--output-file',type=str, default='test_output.jsonl') | |
parser.add_argument('--ontology-file',type=str, default='aida_ontology_new.csv') | |
parser.add_argument('--head-only',action='store_true',default=False) | |
parser.add_argument('--coref', action='store_true', default=False) | |
args = parser.parse_args() | |
nlp = spacy.load('en_core_web_sm') | |
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab) | |
# read ontology 读取事件本体 模板文件中的内容 | |
ontology_dict ={} | |
with open('aida_ontology_new.csv','r') as f: | |
for lidx, line in enumerate(f): | |
# 跳过第一行表头字段 | |
if lidx == 0:# header | |
continue | |
fields = line.strip().split(',') | |
# 说明该事件类型下不存在待抽取的论元 | |
if len(fields) < 2: | |
break | |
# 事件类型是第一个 | |
evt_type = fields[0] | |
# 从第三个元素往后都是待抽取论语及其论元角色 | |
arguments = fields[2:] | |
# 获取该事件类型下带带抽取的论元数量 | |
args_len = 0 | |
for i, arg in enumerate(arguments): | |
if arg != '': | |
args_len = args_len + 1 | |
# 将事件本体字典中添加事件类型的key,该key下对应的value为模板 | |
# 利用args_len将template中的子模板数量进行循环增加, 将后续的子模板通过字符串拼接的方式进行增加 | |
# 最终的模板样式变为 what is the <arg1> in <trg> what is the <arg2> in <trg> | |
# 先利用一个临时的字符串变量来存储模板 ----------> temp_template | |
temp_template = "" | |
for i in range(args_len): | |
temp_template = temp_template + " what is the <arg{}> in <trg>".format(i + 1) | |
print(temp_template) | |
# 在事件本体字典中建立key-value 以事件类型为关键字 | |
ontology_dict[evt_type] = { | |
'template': temp_template | |
} | |
for i, arg in enumerate(arguments): | |
if arg !='': | |
ontology_dict[evt_type]['arg{}'.format(i+1)] = arg | |
ontology_dict[evt_type][arg] = 'arg{}'.format(i+1) | |
examples = {} | |
print(args.gen_file) | |
# data/RAMS_1.0/data/test_head_coref.jsonlines | |
with open(args.test_file, 'r') as f: | |
for line in f: | |
ex = json.loads(line.strip()) | |
ex['ref_evt_links'] = deepcopy(ex['gold_evt_links']) | |
ex['gold_evt_links'] = [] | |
examples[ex['doc_key']] =ex | |
# checkpoints/gen-RAMS-pred/predictions.jsonl | |
with open(args.gen_file,'r') as f: | |
for line in f: | |
pred = json.loads(line.strip()) | |
# print(pred) | |
examples[pred['doc_key']]['predicted'] = pred['predicted'] | |
examples[pred['doc_key']]['gold'] = pred['gold'] | |
# checkpoints/gen-RAMS-pred/out_put.jsonl | |
writer = open(args.output_file, 'w') | |
for ex in tqdm(examples.values()): | |
if 'predicted' not in ex:# this is used for testing | |
continue | |
# get template | |
evt_type = get_event_type(ex)[0] | |
context_words = [w for sent in ex['sentences'] for w in sent ] | |
template = ontology_dict[evt_type.replace('n/a','unspecified')]['template'] | |
# extract argument text | |
predicted_args = extract_args_from_template(ex,template, ontology_dict) | |
# get trigger | |
# extract argument span | |
trigger_start = ex['evt_triggers'][0][0] | |
trigger_end = ex['evt_triggers'][0][1] | |
doc = None | |
if args.head_only: | |
doc = nlp(' '.join(context_words)) | |
for argname in predicted_args: | |
arg_span = find_arg_span(predicted_args[argname], context_words, | |
trigger_start, trigger_end, head_only=args.head_only, doc=doc) | |
if arg_span:# if None means hullucination | |
if args.head_only and args.coref: | |
# consider coreferential mentions as matching | |
assert('corefs' in ex) | |
gold_spans = [a[1] for a in ex['ref_evt_links'] if a[2]==argname] | |
arg_span = check_coref(ex, list(arg_span), gold_spans) | |
ex['gold_evt_links'].append([[trigger_start, trigger_end], list(arg_span), argname]) | |
writer.write(json.dumps(ex)+'\n') | |
writer.close() | |