Bart-gen-arg / src /genie /question /data_module.py
adherent's picture
new
44a9d55
raw
history blame
7.83 kB
import os
import json
import re
import random
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
MAX_LENGTH=424
MAX_TGT_LENGTH=72
DOC_STRIDE=256
print("data_module.py")
class RAMSDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>',' <tgr>'])
def get_event_type(self,ex):
evt_type = []
for evt in ex['evt_triggers']:
for t in evt[2]:
evt_type.append( t[0])
return evt_type
def create_gold_gen(self, ex, ontology_dict,mark_trigger=True):
'''assumes that each line only contains 1 event.
Input: <s> Template with special <arg> placeholders </s> </s> Passage </s>
Output: <s> Template with arguments and <arg> when no argument is found.
'''
evt_type = self.get_event_type(ex)[0]
context_words = [w for sent in ex['sentences'] for w in sent ]
template = ontology_dict[evt_type.replace('n/a','unspecified')]['template']
input_template = re.sub(r'<arg\d>', '<arg>', template)
space_tokenized_input_template = input_template.split(' ')
tokenized_input_template = []
for w in space_tokenized_input_template:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
for triple in ex['gold_evt_links']:
trigger_span, argument_span, arg_name = triple
arg_num = ontology_dict[evt_type.replace('n/a','unspecified')][arg_name]
arg_text = ' '.join(context_words[argument_span[0]:argument_span[1]+1])
template = re.sub('<{}>'.format(arg_num),arg_text , template)
trigger = ex['evt_triggers'][0]
if mark_trigger:
trigger_span_start = trigger[0]
trigger_span_end = trigger[1] +2 # one for inclusion, one for extra start marker
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger[0]]), add_prefix_space=True)
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger[0]: trigger[1]+1]), add_prefix_space=True)
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger[1]+1:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
output_template = re.sub(r'<arg\d>','<arg>', template )
space_tokenized_template = output_template.split(' ')
tokenized_template = []
for w in space_tokenized_template:
tokenized_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
return tokenized_input_template, tokenized_template, context
def load_ontology(self):
# read ontology
ontology_dict ={}
with open('aida_ontology_cleaned.csv','r') as f:
for lidx, line in enumerate(f):
if lidx == 0:# header
continue
fields = line.strip().split(',')
if len(fields) < 2:
break
evt_type = fields[0]
args = fields[2:]
ontology_dict[evt_type] = {
'template': fields[1]
}
for i, arg in enumerate(args):
if arg !='':
ontology_dict[evt_type]['arg{}'.format(i+1)] = arg
ontology_dict[evt_type][arg] = 'arg{}'.format(i+1)
x = 1
while(x > 0):
#print(ontology_dict)
x = x - 1
return ontology_dict
def prepare_data(self):
if not os.path.exists('span_preprocessed_data'):
os.makedirs('span_preprocessed_data')
ontology_dict = self.load_ontology()
for split,f in [('train',self.hparams.train_file), ('val',self.hparams.val_file), ('test',self.hparams.test_file)]:
with open(f,'r') as reader, open('span_preprocessed_data/{}.jsonl'.format(split), 'w') as writer:
for lidx, line in enumerate(reader):
ex = json.loads(line.strip())
input_template, output_template, context= self.create_gold_gen(ex, ontology_dict, self.hparams.mark_trigger)
input_tokens = self.tokenizer.encode_plus(input_template, context,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
tgt_tokens = self.tokenizer.encode_plus(output_template,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
processed_ex = {
# 'idx': lidx,
'doc_key': ex['doc_key'],
'input_token_ids':input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
writer.write(json.dumps(processed_ex) + '\n')
def train_dataloader(self):
dataset = IEDataset('span_preprocessed_data/train.jsonl')
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
dataset = IEDataset('span_preprocessed_data/val.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
dataset = IEDataset('span_preprocessed_data/test.jsonl')
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file',type=str,default='data/RAMS_1.0/data/train.jsonlines')
parser.add_argument('--val-file', type=str, default='data/RAMS_1.0/data/dev.jsonlines')
parser.add_argument('--test-file', type=str, default='data/RAMS_1.0/data/test.jsonlines')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--mark-trigger', action='store_true', default=True)
args = parser.parse_args()
dm = RAMSDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break
# val dataloader