Bart-gen-arg / src /genie /ACE_data_module.py
adherent's picture
what is the <arg> in <trg>
6c25ddb
raw
history blame
8.74 kB
from json import load
import os
import json
import re
from collections import defaultdict
import argparse
import transformers
from transformers import BartTokenizer
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from .data import IEDataset, my_collate
from .utils import load_ontology
MAX_LENGTH=170
MAX_TGT_LENGTH=72
class ACEDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.hparams = args
self.tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
self.tokenizer.add_tokens([' <arg>',' <tgr>'])
def create_gold_gen(self, ex, ontology_dict,mark_trigger=True, index=0):
'''
If there are multiple events per example, use index parameter.
Input: <s> Template with special <arg> placeholders </s> </s> Passage </s>
Output: <s> Template with arguments and <arg> when no argument is found.
'''
evt_type = ex['event_mentions'][index]['event_type']
context_words = ex['tokens']
template = ontology_dict[evt_type]['template']
input_template = re.sub(r'<arg\d>', '<arg>', template)
space_tokenized_input_template = input_template.split()
tokenized_input_template = []
for w in space_tokenized_input_template:
tokenized_input_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
role2arg = defaultdict(list)
for argument in ex['event_mentions'][index]['arguments']:
role2arg[argument['role']].append(argument)
role2arg = dict(role2arg)
arg_idx2text = defaultdict(list)
for role in role2arg.keys():
if role not in ontology_dict[evt_type]:
# annotation error
continue
for i, argument in enumerate(role2arg[role]):
arg_text = argument['text']
if i < len(ontology_dict[evt_type][role]):
# enough slots to fill in
arg_idx = ontology_dict[evt_type][role][i]
else:
# multiple participants for the same role
arg_idx = ontology_dict[evt_type][role][-1]
arg_idx2text[arg_idx].append(arg_text)
for arg_idx, text_list in arg_idx2text.items():
text = ' and '.join(text_list)
template = re.sub('<{}>'.format(arg_idx), text, template)
trigger = ex['event_mentions'][index]['trigger']
# trigger span does not include last index
if mark_trigger:
prefix = self.tokenizer.tokenize(' '.join(context_words[:trigger['start']]), add_prefix_space=True)
tgt = self.tokenizer.tokenize(' '.join(context_words[trigger['start']: trigger['end']]), add_prefix_space=True)
suffix = self.tokenizer.tokenize(' '.join(context_words[trigger['end']:]), add_prefix_space=True)
context = prefix + [' <tgr>', ] + tgt + [' <tgr>', ] + suffix
else:
context = self.tokenizer.tokenize(' '.join(context_words), add_prefix_space=True)
output_template = re.sub(r'<arg\d>','<arg>', template )
space_tokenized_template = output_template.split()
tokenized_template = []
for w in space_tokenized_template:
tokenized_template.extend(self.tokenizer.tokenize(w, add_prefix_space=True))
return tokenized_input_template, tokenized_template, context
def prepare_data(self):
if self.hparams.tmp_dir:
data_dir = self.hparams.tmp_dir
else:
data_dir = 'preprocessed_{}'.format(self.hparams.dataset)
if not os.path.exists(data_dir):
print('creating tmp dir ....')
os.makedirs(data_dir)
if self.hparams.dataset == 'combined':
ontology_dict = load_ontology(dataset='KAIROS')
else:
ontology_dict = load_ontology(dataset=self.hparams.dataset)
for split,f in [('train',self.hparams.train_file), ('val',self.hparams.val_file), ('test',self.hparams.test_file)]:
if (split in ['train', 'val']) and not f: #possible for eval_only
continue
with open(f,'r') as reader, open(os.path.join(data_dir,'{}.jsonl'.format(split)), 'w') as writer:
for lidx, line in enumerate(reader):
ex = json.loads(line.strip())
for i in range(len(ex['event_mentions'])):
evt_type = ex['event_mentions'][i]['event_type']
if evt_type not in ontology_dict: # should be a rare event type
print(evt_type)
continue
input_template, output_template, context= self.create_gold_gen(ex, ontology_dict, self.hparams.mark_trigger, index=i)
input_tokens = self.tokenizer.encode_plus(input_template, context,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_LENGTH,
truncation='only_second',
padding='max_length')
tgt_tokens = self.tokenizer.encode_plus(output_template,
add_special_tokens=True,
add_prefix_space=True,
max_length=MAX_TGT_LENGTH,
truncation=True,
padding='max_length')
processed_ex = {
'doc_key': ex['sent_id'], #this is not unique
'input_token_ids':input_tokens['input_ids'],
'input_attn_mask': input_tokens['attention_mask'],
'tgt_token_ids': tgt_tokens['input_ids'],
'tgt_attn_mask': tgt_tokens['attention_mask'],
}
writer.write(json.dumps(processed_ex) + '\n')
def train_dataloader(self):
if self.hparams.tmp_dir:
data_dir = self.hparams.tmp_dir
else:
data_dir = 'preprocessed_{}'.format(self.hparams.dataset)
dataset = IEDataset(os.path.join(data_dir, 'train.jsonl'))
dataloader = DataLoader(dataset,
pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.train_batch_size,
shuffle=True)
return dataloader
def val_dataloader(self):
if self.hparams.tmp_dir:
data_dir = self.hparams.tmp_dir
else:
data_dir = 'preprocessed_{}'.format(self.hparams.dataset)
dataset = IEDataset(os.path.join(data_dir, 'val.jsonl'))
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
def test_dataloader(self):
if self.hparams.tmp_dir:
data_dir = self.hparams.tmp_dir
else:
data_dir = 'preprocessed_{}'.format(self.hparams.dataset)
dataset = IEDataset(os.path.join(data_dir, 'test.jsonl'))
dataloader = DataLoader(dataset, pin_memory=True, num_workers=2,
collate_fn=my_collate,
batch_size=self.hparams.eval_batch_size, shuffle=False)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file',type=str)
parser.add_argument('--val-file', type=str)
parser.add_argument('--test-file', type=str)
parser.add_argument('--tmp_dir', default='tmp')
parser.add_argument('--train_batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--mark-trigger', action='store_true', default=True)
parser.add_argument('--dataset', type=str, default='combined')
args = parser.parse_args()
dm = ACEDataModule(args=args)
dm.prepare_data()
# training dataloader
dataloader = dm.train_dataloader()
for idx, batch in enumerate(dataloader):
print(batch)
break