Spaces:
Paused
Paused
Create vectorstore.py
Browse files- vectorstore.py +94 -0
vectorstore.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz
|
2 |
+
import re
|
3 |
+
import chromadb
|
4 |
+
from chromadb.utils import embedding_functions
|
5 |
+
import uuid
|
6 |
+
import torch
|
7 |
+
from langchain.text_splitter import SentenceTransformersTokenTextSplitter
|
8 |
+
from sentence_transformers import CrossEncoder
|
9 |
+
|
10 |
+
|
11 |
+
emb_model_name = "sentence-transformers/all-mpnet-base-v2"
|
12 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
|
13 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
14 |
+
|
15 |
+
client = chromadb.PersistentClient(path='.vectorstore')
|
16 |
+
|
17 |
+
collection = client.get_or_create_collection(name='huerto',embedding_function=sentence_transformer_ef,metadata={"hnsw:space": "cosine"})
|
18 |
+
|
19 |
+
def parse_pdf(file) :
|
20 |
+
'''transforma un pdf en una lista'''
|
21 |
+
pdf = fitz.open(file)
|
22 |
+
output = []
|
23 |
+
for page_num in range(pdf.page_count):
|
24 |
+
page = pdf[page_num]
|
25 |
+
text = page.get_text()
|
26 |
+
# Merge hyphenated words
|
27 |
+
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
|
28 |
+
# Fix newlines in the middle of sentences
|
29 |
+
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
|
30 |
+
# Remove multiple newlines
|
31 |
+
text = re.sub(r"\n\s*\n", "\n\n", text)
|
32 |
+
output.append(text)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
def file_to_splits(file,tokens_per_chunk,chunk_overlap ):
|
37 |
+
'''Transforma un txt o pdf en una en una lista que contiene piezas con metadata'''
|
38 |
+
text_splitter = SentenceTransformersTokenTextSplitter(
|
39 |
+
model_name=emb_model_name,
|
40 |
+
tokens_per_chunk=tokens_per_chunk,
|
41 |
+
chunk_overlap=chunk_overlap,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
text = parse_pdf(file)
|
46 |
+
|
47 |
+
doc_chunks = []
|
48 |
+
for i in range(len(text)):
|
49 |
+
chunks = text_splitter.split_text(text[i])
|
50 |
+
for j in range(len(chunks)):
|
51 |
+
doc = [chunks[j], {"source": file.split('/')[-1] ,"page": i+1, "chunk": j+1}, str(uuid.uuid4())]
|
52 |
+
doc_chunks.append(doc)
|
53 |
+
return doc_chunks
|
54 |
+
|
55 |
+
|
56 |
+
def file_to_vs(file,tokens_per_chunk, chunk_overlap):
|
57 |
+
try:
|
58 |
+
|
59 |
+
splits=[]
|
60 |
+
|
61 |
+
splits.extend(file_to_splits(file,
|
62 |
+
tokens_per_chunk,
|
63 |
+
chunk_overlap))
|
64 |
+
splits = list(zip(*splits))
|
65 |
+
|
66 |
+
collection.add(documents=list(splits[0]), metadatas=list(splits[1]), ids= list(splits[2]))
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
return 'Files uploaded successfully'
|
73 |
+
except Exception as e:
|
74 |
+
|
75 |
+
return str(e)
|
76 |
+
|
77 |
+
def similarity_search(query,k):
|
78 |
+
sources = {}
|
79 |
+
ss_out= collection.query(query_texts=[query],n_results=20)
|
80 |
+
for _ in range(len(ss_out['ids'][0])):
|
81 |
+
score = float(cross_encoder.predict([query,ss_out['documents'][0][_]],activation_fct=torch.nn.Sigmoid()))
|
82 |
+
sources[str(_)]={"page_content":ss_out['documents'][0][_],"metadata":ss_out['metadatas'][0][_],"similarity":round(score*100,2)}
|
83 |
+
|
84 |
+
|
85 |
+
sorted_sources = sorted(sources.items(), key=lambda x: x[1]['similarity'], reverse=True)
|
86 |
+
|
87 |
+
sources = {}
|
88 |
+
for _ in range(k):
|
89 |
+
sources[str(_)] = sorted_sources[_][1]
|
90 |
+
|
91 |
+
|
92 |
+
return sources
|
93 |
+
|
94 |
+
|