|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
import os |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from dotenv import load_dotenv |
|
from langchain_community.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain import HuggingFaceHub |
|
from dotenv import load_dotenv |
|
import os |
|
|
|
load_dotenv() |
|
|
|
def get_pdf_text(pdf_docs): |
|
"""Extracts text from all pages of provided PDF documents""" |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
def get_text_chunks(text): |
|
"""Splits text into chunks of 10,000 characters with 1,000 character overlap""" |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
def get_vector_store(text_chunks, hf): |
|
"""Creates and saves a FAISS vector store from text chunks""" |
|
vector_store = FAISS.from_texts(text_chunks, embedding=hf) |
|
vector_store.save_local("faiss_index") |
|
|
|
def get_conversational_chain(): |
|
"""Creates and returns a conversational chain for question answering""" |
|
prompt_template = """Answer the question concisely, focusing on the most relevant and important details from the PDF context. Refrain from mentioning any mathematical equations, even if they are present in provided context. Focus on the textual information available. Please provide direct quotations or references from PDF to back up your response. If the answer is not found within the PDF, please state "answer is not available in the context."\n\nContext:\n {context}?\nQuestion: \n{question}\nExample response format:Overview: (brief summary or introduction)Key points: (point 1: paragraph for key details)(point 2: paragraph for key details)...Use a mix of paragraphs and points to effectively convey the information.""" |
|
|
|
|
|
model = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.2, "max_length": 100}, token=os.environ['HUGGINGFACEHUB_API_TOKEN'])) |
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
return chain |
|
|
|
def user_input(user_question, hf): |
|
"""Processes user question and provides a response""" |
|
try: |
|
new_db = FAISS.load_local("faiss_index", hf, allow_dangerous_deserialization=True) |
|
docs = new_db.similarity_search(user_question) |
|
except FileNotFoundError: |
|
st.error("No index found. Please upload PDFs and click 'Submit & Process' first.") |
|
return |
|
|
|
chain = get_conversational_chain() |
|
response = chain.invoke( |
|
{"input_documents": docs, "question": user_question}, |
|
return_only_outputs=True |
|
) |
|
st.write("Reply: ", response["output_text"], "") |
|
|
|
def main(): |
|
"""Streamlit UI""" |
|
st.set_page_config(page_title="Chat with PDFs", page_icon="") |
|
st.header("Enterprise Brain Sub-Component") |
|
st.header("RAG based Chatbot ") |
|
|
|
user_question = st.text_input("Ask a Question from PDF file(s)") |
|
|
|
with st.sidebar: |
|
st.title("Menu ✨") |
|
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button ", |
|
accept_multiple_files=True) |
|
if pdf_docs: |
|
with st.spinner("Processing..."): |
|
try: |
|
raw_text = get_pdf_text(pdf_docs) |
|
text_chunks = get_text_chunks(raw_text) |
|
model_name = "BAAI/bge-large-en" |
|
model_kwargs = {'device': 'cpu'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
hf = HuggingFaceBgeEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs) |
|
get_vector_store(text_chunks, hf) |
|
st.success("Done ✨") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
if user_question: |
|
user_input(user_question, hf) |
|
|
|
if __name__ == "__main__": |
|
main() |