|
|
|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
import os |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings |
|
import google.generativeai as genai |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
os.getenv("GOOGLE_API_KEY") |
|
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) |
|
|
|
|
|
def get_pdf_text(pdf_docs): |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
|
|
def get_text_chunks(text): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
|
|
def get_vector_store(text_chunks): |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") |
|
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) |
|
vector_store.save_local("faiss_index") |
|
|
|
|
|
def get_conversational_chain(): |
|
prompt_template = """ |
|
Answer the question concisely, focusing on the most relevant and important details from the PDF context. |
|
Refrain from mentioning any mathematical equations, even if they are present in provided context. |
|
Focus on the textual information available. Please provide direct quotations or references from PDF |
|
to back up your response. If the answer is not found within the PDF, |
|
please state "answer is not available in the context."\n\n |
|
|
|
Context:\n {context}?\n |
|
Question: \n{question}\n |
|
|
|
Example response format: |
|
|
|
Overview: |
|
(brief summary or introduction) |
|
|
|
Key points: |
|
(point 1: paragraph for key details) |
|
(point 2: paragraph for key details) |
|
... |
|
|
|
Use a mix of paragraphs and points to effectively convey the information. |
|
""" |
|
|
|
|
|
|
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.2) |
|
|
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
|
|
return chain |
|
|
|
|
|
def user_input(user_question): |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") |
|
|
|
new_db = FAISS.load_local("faiss_index", embeddings) |
|
docs = new_db.similarity_search(user_question) |
|
|
|
chain = get_conversational_chain() |
|
|
|
response = chain.invoke( |
|
{"input_documents": docs, "question": user_question}, |
|
return_only_outputs=True |
|
) |
|
|
|
st.write("Reply: ", response["output_text"],"") |
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="Chat with PDFs", page_icon="") |
|
st.header("Chat with multiple PDFs using AI 💬") |
|
|
|
user_question = st.text_input("Ask a Question from PDF file(s)") |
|
|
|
if user_question: |
|
user_input(user_question) |
|
|
|
with st.sidebar: |
|
st.title("Menu ✨") |
|
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button ", |
|
accept_multiple_files=True) |
|
|
|
if st.button("Submit & Process"): |
|
with st.spinner("Processing..."): |
|
raw_text = get_pdf_text(pdf_docs) |
|
text_chunks = get_text_chunks(raw_text) |
|
get_vector_store(text_chunks) |
|
st.success("Done ✨") |
|
|
|
if __name__ == "__main__": |
|
main() |