visox / app.py
adil9858's picture
Update app.py
c2d4854 verified
raw
history blame
4.49 kB
import streamlit as st
from together import Together
import base64
from PIL import Image
from io import BytesIO
import os
from elevenlabs.client import ElevenLabs
# Set API keys as environment variables
os.environ["TOGETHER_API_KEY"] = st.secrets['together_api']
os.environ["ELEVENLABS_API_KEY"] = st.secrets['elevenlabs_api']
# Initialize the Together client
together_client = Together(api_key=os.environ["TOGETHER_API_KEY"])
# Initialize ElevenLabs client
elevenlabs_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"])
# Function to encode image to base64
def encode_image(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
return base64.b64encode(image_bytes).decode('utf-8')
# Function to get image description from Together API
def get_image_description(image):
get_description_prompt = "Describe the given image in detail in only 20 words max."
# Encode the image to base64
base64_image = encode_image(image)
# Create the request to Together API
response = together_client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": get_description_prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}],
stream=False,
)
# Return the result from the API
return response.choices[0].message.content
# Function to convert text to speech using ElevenLabs
def tts(text):
try:
# Generate the audio (returns a generator)
audio_generator = elevenlabs_client.text_to_speech.convert(
text=text,
voice_id="JBFqnCBsd6RMkjVDRZzb", # Replace with your preferred voice ID
model_id="eleven_multilingual_v2",
output_format="mp3_44100_128",
)
# Save the audio to a temporary file
audio_file_path = "temp_audio.mp3"
with open(audio_file_path, "wb") as f:
for chunk in audio_generator:
f.write(chunk)
# Play the audio in Streamlit
st.audio(audio_file_path, format="audio/mp3",autoplay=True)
except Exception as e:
st.error(f"Error generating speech: {e}")
# Custom CSS for a futuristic look
st.markdown(
"""
<style>
.stApp {
background: linear-gradient(135deg, #1e1e2f, #2a2a40);
color: #ffffff;
font-family: 'Arial', sans-serif;
}
.stButton>button {
background: linear-gradient(135deg, #6a11cb, #2575fc);
color: white;
border: none;
border-radius: 12px;
padding: 10px 20px;
font-size: 16px;
font-weight: bold;
}
.stButton>button:hover {
background: linear-gradient(135deg, #2575fc, #6a11cb);
}
.stImage {
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.stMarkdown h1 {
color: #6a11cb;
text-align: center;
font-size: 36px;
font-weight: bold;
}
.stMarkdown h2 {
color: #2575fc;
font-size: 24px;
font-weight: bold;
}
.stSpinner>div {
color: #6a11cb;
}
</style>
""",
unsafe_allow_html=True,
)
# Streamlit app layout
st.title("๐Ÿ”ฎ Visox | Koshur AI")
st.markdown("### See the world through AI's eyes!")
# Sidebar for additional info
st.sidebar.markdown("## About")
st.sidebar.markdown("This app uses advanced AI to describe what it sees through your camera in real-time.")
st.sidebar.markdown("Powered by [Together AI](https://together.ai) and Streamlit.")
# Access the camera
img_file_buffer = st.camera_input("Take a picture")
if img_file_buffer is not None:
try:
# Convert the image file buffer to a PIL Image
img = Image.open(img_file_buffer)
# Display the captured image
st.image(img, caption='Captured Image', width=300)
# Get and display the description
with st.spinner('๐Ÿ” Analyzing the image...'):
description = get_image_description(img)
st.success('โœ… Analysis complete!')
st.markdown("### AI Description:")
st.write(description)
# Convert description to speech and play it
tts(description)