adirik's picture
clean up
2b592a0
raw
history blame
2.58 kB
import torch
import gradio as gr
from transformers import AlignProcessor, AlignModel
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base").to(device)
model.eval()
def predict(image, labels):
labels = labels.split(', ')
inputs = processor(images=image, text=labels, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1).cpu().numpy()
return {k: float(v) for k, v in zip(labels, probs[0])}
description = """
<div class="container" style="display:flex;">
<div class="image">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/132_vit_align/align.png" alt="ALIGN performance" />
</div>
<div class="text">
<p>Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/align">ALIGN</a>,
as introduced in <a href="https://arxiv.org/abs/2102.05918"></a><i>"Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision"</i>. ALIGN features a dual-encoder architecture with EfficientNet and BERT as its text and vision encoders, and learns to align visual and text representations with contrastive learning.
Unlike previous work, ALIGN leverages a massive noisy dataset and shows that the scale of the corpus can be used to achieve SOTA representations with a simple recipe.
\n\nALIGN is not open-sourced and the `kakaobrain/align-base` model used for this demo is based on the Kakao Brain implementation that follows the original paper. The model is trained on the open source [COYO](https://github.com/kakaobrain/coyo-dataset) dataset by the Kakao Brain team. To perform zero-shot image classification with ALIGN, upload an image and enter your candidate labels as free-form text separated by a comma followed by a space.</p>
</div>
</div>
"""
gr.Interface(
fn=predict,
inputs=[
gr.inputs.Image(label="Image to classify", type="pil"),
gr.inputs.Textbox(lines=1, label="Comma separated candidate labels", placeholder="Enter labels separated by ', '",)
],
theme="grass",
outputs="label",
examples=[
["assets/cartoon.jpeg", "dinosaur, drawing, forest",],
["assets/painting.jpeg", "watercolor painting, oil painting, boats",],
],
title="Zero-Shot Image Classification with ALIGN",
description=description
).launch()