Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
import os | |
import re | |
from typing import List, Optional | |
import torchvision | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |
import click | |
import dnnlib | |
import numpy as np | |
import PIL.Image | |
import torch | |
from torch import linalg as LA | |
import clip | |
from PIL import Image | |
import legacy | |
import torch.nn.functional as F | |
import cv2 | |
import matplotlib.pyplot as plt | |
from torch_utils import misc | |
from torch_utils import persistence | |
from torch_utils.ops import conv2d_resample | |
from torch_utils.ops import upfirdn2d | |
from torch_utils.ops import bias_act | |
from torch_utils.ops import fma | |
import random | |
import math | |
import time | |
import id_loss | |
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
else: | |
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
def unravel_index(index, shape): | |
out = [] | |
for dim in reversed(shape): | |
out.append(index % dim) | |
index = index // dim | |
return tuple(reversed(out)) | |
#---------------------------------------------------------------------------- | |
def num_range(s: str) -> List[int]: | |
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' | |
range_re = re.compile(r'^(\d+)-(\d+)$') | |
m = range_re.match(s) | |
if m: | |
return list(range(int(m.group(1)), int(m.group(2))+1)) | |
vals = s.split(',') | |
return [int(x) for x in vals] | |
#---------------------------------------------------------------------------- | |
def generate_images( | |
ctx: click.Context, | |
network_pkl: str, | |
seeds: Optional[List[int]], | |
truncation_psi: float, | |
noise_mode: str, | |
outdir: str, | |
class_idx: Optional[int], | |
projected_w: Optional[str], | |
projected_s: Optional[str], | |
resolution: int, | |
batch_size: int, | |
identity_power: str | |
): | |
"""Generate images using pretrained network pickle. | |
Examples: | |
\b | |
# Generate curated MetFaces images without truncation (Fig.10 left) | |
python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
\b | |
# Generate uncurated MetFaces images with truncation (Fig.12 upper left) | |
python generate.py --outdir=out --trunc=0.7 --seeds=600-605 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
\b | |
# Generate class conditional CIFAR-10 images (Fig.17 left, Car) | |
python generate.py --outdir=out --seeds=0-35 --class=1 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/cifar10.pkl | |
\b | |
# Render an image from projected W | |
python generate.py --outdir=out --projected_w=projected_w.npz \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
""" | |
print('Loading networks from "%s"...' % network_pkl) | |
device = torch.device('cuda') | |
with dnnlib.util.open_url(network_pkl) as f: | |
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore | |
os.makedirs(outdir, exist_ok=True) | |
# Synthesize the result of a W projection. | |
if projected_w is not None: | |
if seeds is not None: | |
print ('warn: --seeds is ignored when using --projected-w') | |
print(f'Generating images from projected W "{projected_w}"') | |
ws = np.load(projected_w)['w'] | |
ws = torch.tensor(ws, device=device) # pylint: disable=not-callable | |
assert ws.shape[1:] == (G.num_ws, G.w_dim) | |
for idx, w in enumerate(ws): | |
img = G.synthesis(w.unsqueeze(0), noise_mode=noise_mode) | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/proj{idx:02d}.png') | |
return | |
if seeds is None: | |
ctx.fail('--seeds option is required when not using --projected-w') | |
# Labels. | |
label = torch.zeros([1, G.c_dim], device=device).requires_grad_() | |
if G.c_dim != 0: | |
if class_idx is None: | |
ctx.fail('Must specify class label with --class when using a conditional network') | |
label[:, class_idx] = 1 | |
else: | |
if class_idx is not None: | |
print ('warn: --class=lbl ignored when running on an unconditional network') | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
text_prompts_file = open("text_prompts.txt") | |
text_prompts = text_prompts_file.read().split("\n") | |
text_prompts_file.close() | |
text = clip.tokenize(text_prompts).to(device) | |
text_features = model.encode_text(text) | |
# Generate images. | |
for i in G.parameters(): | |
i.requires_grad = True | |
mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device) | |
std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device) | |
if mean.ndim == 1: | |
mean = mean.view(-1, 1, 1) | |
if std.ndim == 1: | |
std = std.view(-1, 1, 1) | |
transf = Compose([ | |
Resize(224, interpolation=Image.BICUBIC), | |
CenterCrop(224), | |
]) | |
styles_array = [] | |
print("seeds:", seeds) | |
t1 = time.time() | |
for seed_idx, seed in enumerate(seeds): | |
if seed==seeds[-1]: | |
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) | |
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) | |
ws = G.mapping(z, label, truncation_psi=truncation_psi) | |
block_ws = [] | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in G.synthesis.block_resolutions: | |
block = getattr(G.synthesis, f'b{res}') | |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) | |
w_idx += block.num_conv | |
styles = torch.zeros(1,26,512, device=device) | |
styles_idx = 0 | |
temp_shapes = [] | |
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): | |
block = getattr(G.synthesis, f'b{res}') | |
if res == 4: | |
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:]) | |
styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:]) | |
if seed_idx==(len(seeds)-1): | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 2 | |
else: | |
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) | |
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) | |
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) | |
if seed_idx==(len(seeds)-1): | |
block.conv0.affine = torch.nn.Identity() | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 3 | |
temp_shapes.append(temp_shape) | |
styles = styles.detach() | |
styles_array.append(styles) | |
resolution_dict = {256: 6, 512: 7, 1024: 8} | |
identity_coefficient_dict = {"high": 2,"medium": 0.5, "low": 0.1, "none": 0} | |
identity_coefficient = identity_coefficient_dict[identity_power] | |
styles_wanted_direction = torch.zeros(1,26,512, device=device) | |
styles_wanted_direction_grad_el2 = torch.zeros(1,26,512, device=device) | |
styles_wanted_direction.requires_grad_() | |
global id_loss | |
id_loss = id_loss.IDLoss("a").to(device).eval() | |
temp_photos = [] | |
grads = [] | |
for i in range(math.ceil(len(seeds)/batch_size)): | |
#print(i*batch_size, "processed", time.time()-t1) | |
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) | |
seed = seeds[i] | |
styles_idx = 0 | |
x2 = img2 = None | |
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k>resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 2 | |
else: | |
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 3 | |
img2_cpu = img2.detach().cpu().numpy() | |
temp_photos.append(img2_cpu) | |
if i>3: | |
continue | |
styles2 = styles + styles_wanted_direction | |
styles_idx = 0 | |
x = img = None | |
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k>resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 2 | |
else: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 3 | |
identity_loss, _ = id_loss(img, img2) | |
identity_loss *= identity_coefficient | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) | |
img = (transf(img.permute(0, 3, 1, 2))/255).sub_(mean).div_(std) | |
image_features = model.encode_image(img) | |
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0)) | |
(identity_loss + cos_sim.sum()).backward(retain_graph=True) | |
#t1 = time.time() | |
for text_counter in range(len(text_prompts)): | |
text_prompt = text_prompts[text_counter] | |
print(text_prompt) | |
styles_wanted_direction.grad.data.zero_() | |
styles_wanted_direction_grad_el2 = torch.zeros(1,26,512, device=device) | |
with torch.no_grad(): | |
styles_wanted_direction *= 0 | |
for i in range(math.ceil(len(seeds)/batch_size)): | |
print(i*batch_size, "processed", time.time()-t1) | |
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) | |
seed = seeds[i] | |
img2 = torch.tensor(temp_photos[i]).to(device) | |
styles2 = styles + styles_wanted_direction | |
styles_idx = 0 | |
x = img = None | |
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k>resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 2 | |
else: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode) | |
styles_idx += 3 | |
identity_loss, _ = id_loss(img, img2) | |
identity_loss *= identity_coefficient | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) | |
img = (transf(img.permute(0, 3, 1, 2))/255).sub_(mean).div_(std) | |
image_features = model.encode_image(img) | |
cos_sim = -1*F.cosine_similarity(image_features, (text_features[text_counter]).unsqueeze(0)) | |
(identity_loss + cos_sim.sum()).backward(retain_graph=True) | |
styles_wanted_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0 | |
if i%2==1: | |
styles_wanted_direction.data = styles_wanted_direction - styles_wanted_direction.grad*5 | |
grads.append(styles_wanted_direction.grad.clone()) | |
styles_wanted_direction.grad.data.zero_() | |
if i>3: | |
styles_wanted_direction_grad_el2[grads[-2]*grads[-1]<0] += 1 | |
styles_wanted_direction_cpu = styles_wanted_direction.detach() | |
styles_wanted_direction_cpu[styles_wanted_direction_grad_el2>(len(seeds)/batch_size)/4] = 0 | |
np.savez(f'{outdir}/direction_'+text_prompt.replace(" ", "_")+'.npz', s=styles_wanted_direction_cpu.cpu().numpy()) | |
print("time passed:", time.time()-t1) | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
generate_images() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |