stylemc-demo / generate_multi.py
adirik's picture
update repo
f4c3c2b
raw
history blame
16.8 kB
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import os
import re
from typing import List, Optional
import torchvision
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import click
import dnnlib
import numpy as np
import PIL.Image
import torch
from torch import linalg as LA
import clip
from PIL import Image
import legacy
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
from torch_utils.ops import fma
import random
import math
import time
import id_loss
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
if img is not None:
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
#----------------------------------------------------------------------------
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=num_range, help='List of random seeds')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--projected-w', help='Projection result file', type=str, metavar='FILE')
@click.option('--projected_s', help='Projection result file', type=str, metavar='FILE')
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
@click.option('--resolution', help='Resolution of output images', type=int, required=True)
@click.option('--batch_size', help='Batch Size', type=int, required=True)
@click.option('--identity_power', help='How much change occurs on the face', type=str, required=True)
def generate_images(
ctx: click.Context,
network_pkl: str,
seeds: Optional[List[int]],
truncation_psi: float,
noise_mode: str,
outdir: str,
class_idx: Optional[int],
projected_w: Optional[str],
projected_s: Optional[str],
resolution: int,
batch_size: int,
identity_power: str
):
"""Generate images using pretrained network pickle.
Examples:
\b
# Generate curated MetFaces images without truncation (Fig.10 left)
python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
\b
# Generate uncurated MetFaces images with truncation (Fig.12 upper left)
python generate.py --outdir=out --trunc=0.7 --seeds=600-605 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
\b
# Generate class conditional CIFAR-10 images (Fig.17 left, Car)
python generate.py --outdir=out --seeds=0-35 --class=1 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/cifar10.pkl
\b
# Render an image from projected W
python generate.py --outdir=out --projected_w=projected_w.npz \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
"""
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
os.makedirs(outdir, exist_ok=True)
# Synthesize the result of a W projection.
if projected_w is not None:
if seeds is not None:
print ('warn: --seeds is ignored when using --projected-w')
print(f'Generating images from projected W "{projected_w}"')
ws = np.load(projected_w)['w']
ws = torch.tensor(ws, device=device) # pylint: disable=not-callable
assert ws.shape[1:] == (G.num_ws, G.w_dim)
for idx, w in enumerate(ws):
img = G.synthesis(w.unsqueeze(0), noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/proj{idx:02d}.png')
return
if seeds is None:
ctx.fail('--seeds option is required when not using --projected-w')
# Labels.
label = torch.zeros([1, G.c_dim], device=device).requires_grad_()
if G.c_dim != 0:
if class_idx is None:
ctx.fail('Must specify class label with --class when using a conditional network')
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
model, preprocess = clip.load("ViT-B/32", device=device)
text_prompts_file = open("text_prompts.txt")
text_prompts = text_prompts_file.read().split("\n")
text_prompts_file.close()
text = clip.tokenize(text_prompts).to(device)
text_features = model.encode_text(text)
# Generate images.
for i in G.parameters():
i.requires_grad = True
mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device)
std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
transf = Compose([
Resize(224, interpolation=Image.BICUBIC),
CenterCrop(224),
])
styles_array = []
print("seeds:", seeds)
t1 = time.time()
for seed_idx, seed in enumerate(seeds):
if seed==seeds[-1]:
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
ws = G.mapping(z, label, truncation_psi=truncation_psi)
block_ws = []
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in G.synthesis.block_resolutions:
block = getattr(G.synthesis, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
styles = torch.zeros(1,26,512, device=device)
styles_idx = 0
temp_shapes = []
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws):
block = getattr(G.synthesis, f'b{res}')
if res == 4:
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:])
styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:])
if seed_idx==(len(seeds)-1):
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 2
else:
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:])
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:])
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:])
if seed_idx==(len(seeds)-1):
block.conv0.affine = torch.nn.Identity()
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 3
temp_shapes.append(temp_shape)
styles = styles.detach()
styles_array.append(styles)
resolution_dict = {256: 6, 512: 7, 1024: 8}
identity_coefficient_dict = {"high": 2,"medium": 0.5, "low": 0.1, "none": 0}
identity_coefficient = identity_coefficient_dict[identity_power]
styles_wanted_direction = torch.zeros(1,26,512, device=device)
styles_wanted_direction_grad_el2 = torch.zeros(1,26,512, device=device)
styles_wanted_direction.requires_grad_()
global id_loss
id_loss = id_loss.IDLoss("a").to(device).eval()
temp_photos = []
grads = []
for i in range(math.ceil(len(seeds)/batch_size)):
#print(i*batch_size, "processed", time.time()-t1)
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
seed = seeds[i]
styles_idx = 0
x2 = img2 = None
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k>resolution_dict[resolution]:
continue
if res == 4:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 2
else:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 3
img2_cpu = img2.detach().cpu().numpy()
temp_photos.append(img2_cpu)
if i>3:
continue
styles2 = styles + styles_wanted_direction
styles_idx = 0
x = img = None
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k>resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 3
identity_loss, _ = id_loss(img, img2)
identity_loss *= identity_coefficient
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2))/255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
#t1 = time.time()
for text_counter in range(len(text_prompts)):
text_prompt = text_prompts[text_counter]
print(text_prompt)
styles_wanted_direction.grad.data.zero_()
styles_wanted_direction_grad_el2 = torch.zeros(1,26,512, device=device)
with torch.no_grad():
styles_wanted_direction *= 0
for i in range(math.ceil(len(seeds)/batch_size)):
print(i*batch_size, "processed", time.time()-t1)
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
seed = seeds[i]
img2 = torch.tensor(temp_photos[i]).to(device)
styles2 = styles + styles_wanted_direction
styles_idx = 0
x = img = None
for k , (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k>resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode)
styles_idx += 3
identity_loss, _ = id_loss(img, img2)
identity_loss *= identity_coefficient
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2))/255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[text_counter]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
styles_wanted_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0
if i%2==1:
styles_wanted_direction.data = styles_wanted_direction - styles_wanted_direction.grad*5
grads.append(styles_wanted_direction.grad.clone())
styles_wanted_direction.grad.data.zero_()
if i>3:
styles_wanted_direction_grad_el2[grads[-2]*grads[-1]<0] += 1
styles_wanted_direction_cpu = styles_wanted_direction.detach()
styles_wanted_direction_cpu[styles_wanted_direction_grad_el2>(len(seeds)/batch_size)/4] = 0
np.savez(f'{outdir}/direction_'+text_prompt.replace(" ", "_")+'.npz', s=styles_wanted_direction_cpu.cpu().numpy())
print("time passed:", time.time()-t1)
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------