Spaces:
Sleeping
Sleeping
update app
Browse files- .DS_Store +0 -0
- __init__.py +0 -0
- app.py +177 -20
- find_direction.py +1 -4
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
__init__.py
ADDED
File without changes
|
app.py
CHANGED
@@ -1,29 +1,186 @@
|
|
1 |
-
import cv2
|
2 |
-
import torch
|
3 |
-
import clip
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
description = """
|
20 |
-
"""
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
|
25 |
-
outputs="image",
|
26 |
-
title="Text-guided image manipulation with StyleMC",
|
27 |
-
description=description,
|
28 |
-
)
|
29 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import legacy
|
3 |
+
import dnnlib
|
4 |
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from find_direction import find_direction
|
8 |
+
|
9 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
10 |
+
with dnnlib.util.open_url("./pretrained/ffhq.pkl") as f:
|
11 |
+
G = legacy.load_network_pkl(f)['G_ema'].to(device)
|
12 |
+
|
13 |
+
|
14 |
+
DESCRIPTION = '''# <a href="https://github.com/catlab-team/stylemc"> StyleMC:</a> Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
|
15 |
+
'''
|
16 |
+
FOOTER = 'This space is built by <a href = "https://github.com/catlab-team">Catlab Team</a>.'
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
with gr.Blocks(css='style.css') as demo:
|
21 |
+
gr.Markdown(DESCRIPTION)
|
22 |
+
|
23 |
+
with gr.Box():
|
24 |
+
gr.Markdown('''## Step 1 (Finding a global manipulation direction)
|
25 |
+
- Please enter the target **text prompt** and **identity loss weight** to find global manipulation direction:
|
26 |
+
- Hit the **Find Direction** button.
|
27 |
+
''')
|
28 |
+
with gr.Row():
|
29 |
+
with gr.Column():
|
30 |
+
with gr.Row():
|
31 |
+
text = gr.Textbox(
|
32 |
+
label="Enter your prompt",
|
33 |
+
show_label=False,
|
34 |
+
max_lines=1,
|
35 |
+
placeholder="Enter your prompt",
|
36 |
+
).style(
|
37 |
+
container=False,
|
38 |
+
)
|
39 |
+
identity_loss_weight = gr.Slider(0.1,
|
40 |
+
10,
|
41 |
+
value=0.5,
|
42 |
+
step=0.1,
|
43 |
+
label='Identity Loss Weight',
|
44 |
+
interactive=True)
|
45 |
+
btn = gr.Button("Find Direction").style(full_width=False)
|
46 |
+
|
47 |
+
with gr.Box():
|
48 |
+
gr.Markdown('''## Step 2 (Manipulation)
|
49 |
+
- Please upload an image for manipulation:
|
50 |
+
- You can also select the **previous directions** and determine the **manipulation strength**.
|
51 |
+
- Hit the **Generate** button.
|
52 |
+
''')
|
53 |
+
with gr.Row():
|
54 |
+
identity_loss_weight = gr.Slider(0.1,
|
55 |
+
100,
|
56 |
+
value=50,
|
57 |
+
step=0.1,
|
58 |
+
label='Manipulation Strength',
|
59 |
+
interactive=True)
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
with gr.Row():
|
63 |
+
input_image = gr.Image(label='Input Image',
|
64 |
+
type='filepath')
|
65 |
+
with gr.Row():
|
66 |
+
generate_button = gr.Button('Generate')
|
67 |
+
with gr.Column():
|
68 |
+
with gr.Row():
|
69 |
+
generated_image = gr.Image(label='Generated Image',
|
70 |
+
type='numpy',
|
71 |
+
interactive=False)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
# with gr.Box():
|
77 |
+
# gr.Markdown('''## Step 2 (Select Style Image)
|
78 |
+
# - Select **Style Type**.
|
79 |
+
# - Select **Style Image Index** from the image table below.
|
80 |
+
# ''')
|
81 |
+
# with gr.Row():
|
82 |
+
# with gr.Column():
|
83 |
+
# style_type = gr.Radio(model.style_types,
|
84 |
+
# label='Style Type')
|
85 |
+
# text = get_style_image_markdown_text('cartoon')
|
86 |
+
# style_image = gr.Markdown(value=text)
|
87 |
+
# style_index = gr.Slider(0,
|
88 |
+
# 316,
|
89 |
+
# value=26,
|
90 |
+
# step=1,
|
91 |
+
# label='Style Image Index')
|
92 |
+
|
93 |
+
# with gr.Row():
|
94 |
+
# example_styles = gr.Dataset(
|
95 |
+
# components=[style_type, style_index],
|
96 |
+
# samples=[
|
97 |
+
# ['cartoon', 26],
|
98 |
+
# ['caricature', 65],
|
99 |
+
# ['arcane', 63],
|
100 |
+
# ['pixar', 80],
|
101 |
+
# ])
|
102 |
+
|
103 |
+
# with gr.Box():
|
104 |
+
# gr.Markdown('''## Step 3 (Generate Style Transferred Image)
|
105 |
+
# - Adjust **Structure Weight** and **Color Weight**.
|
106 |
+
# - These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
|
107 |
+
# - Hit the **Generate** button.
|
108 |
+
# ''')
|
109 |
+
# with gr.Row():
|
110 |
+
# with gr.Column():
|
111 |
+
# with gr.Row():
|
112 |
+
# structure_weight = gr.Slider(0,
|
113 |
+
# 1,
|
114 |
+
# value=0.6,
|
115 |
+
# step=0.1,
|
116 |
+
# label='Structure Weight')
|
117 |
+
# with gr.Row():
|
118 |
+
# color_weight = gr.Slider(0,
|
119 |
+
# 1,
|
120 |
+
# value=1,
|
121 |
+
# step=0.1,
|
122 |
+
# label='Color Weight')
|
123 |
+
# with gr.Row():
|
124 |
+
# structure_only = gr.Checkbox(label='Structure Only')
|
125 |
+
# with gr.Row():
|
126 |
+
# generate_button = gr.Button('Generate')
|
127 |
|
128 |
+
# with gr.Column():
|
129 |
+
# result = gr.Image(label='Result')
|
130 |
|
131 |
+
# with gr.Row():
|
132 |
+
# example_weights = gr.Dataset(
|
133 |
+
# components=[structure_weight, color_weight],
|
134 |
+
# samples=[
|
135 |
+
# [0.6, 1.0],
|
136 |
+
# [0.3, 1.0],
|
137 |
+
# [0.0, 1.0],
|
138 |
+
# [1.0, 0.0],
|
139 |
+
# ])
|
140 |
|
141 |
+
gr.Markdown(FOOTER)
|
142 |
|
143 |
+
# preprocess_button.click(fn=model.detect_and_align_face,
|
144 |
+
# inputs=input_image,
|
145 |
+
# outputs=aligned_face)
|
146 |
+
# aligned_face.change(fn=model.reconstruct_face,
|
147 |
+
# inputs=aligned_face,
|
148 |
+
# outputs=[
|
149 |
+
# reconstructed_face,
|
150 |
+
# instyle,
|
151 |
+
# ])
|
152 |
+
# style_type.change(fn=update_slider,
|
153 |
+
# inputs=style_type,
|
154 |
+
# outputs=style_index)
|
155 |
+
# style_type.change(fn=update_style_image,
|
156 |
+
# inputs=style_type,
|
157 |
+
# outputs=style_image)
|
158 |
+
# generate_button.click(fn=model.generate,
|
159 |
+
# inputs=[
|
160 |
+
# style_type,
|
161 |
+
# style_index,
|
162 |
+
# structure_weight,
|
163 |
+
# color_weight,
|
164 |
+
# structure_only,
|
165 |
+
# instyle,
|
166 |
+
# ],
|
167 |
+
# outputs=result)
|
168 |
+
# example_images.click(fn=set_example_image,
|
169 |
+
# inputs=example_images,
|
170 |
+
# outputs=example_images.components)
|
171 |
+
# example_styles.click(fn=set_example_styles,
|
172 |
+
# inputs=example_styles,
|
173 |
+
# outputs=example_styles.components)
|
174 |
+
# example_weights.click(fn=set_example_weights,
|
175 |
+
# inputs=example_weights,
|
176 |
+
# outputs=example_weights.components)
|
177 |
|
178 |
+
demo.launch(
|
179 |
+
# enable_queue=args.enable_queue,
|
180 |
+
# server_port=args.port,
|
181 |
+
# share=args.share,
|
182 |
+
)
|
183 |
|
|
|
|
|
184 |
|
185 |
+
if __name__ == '__main__':
|
186 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
find_direction.py
CHANGED
@@ -72,7 +72,7 @@ def unravel_index(index, shape):
|
|
72 |
return tuple(reversed(out))
|
73 |
|
74 |
def find_direction(
|
75 |
-
|
76 |
text_prompt: str,
|
77 |
truncation_psi: float = 0.7,
|
78 |
noise_mode: str = "const",
|
@@ -82,10 +82,7 @@ def find_direction(
|
|
82 |
seeds=np.random.randint(0, 1000, 128)
|
83 |
|
84 |
batch_size=1
|
85 |
-
print('Loading networks from "%s"...' % network_pkl)
|
86 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
87 |
-
with dnnlib.util.open_url(network_pkl) as f:
|
88 |
-
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
|
89 |
|
90 |
# Labels
|
91 |
class_idx=None
|
|
|
72 |
return tuple(reversed(out))
|
73 |
|
74 |
def find_direction(
|
75 |
+
G,
|
76 |
text_prompt: str,
|
77 |
truncation_psi: float = 0.7,
|
78 |
noise_mode: str = "const",
|
|
|
82 |
seeds=np.random.randint(0, 1000, 128)
|
83 |
|
84 |
batch_size=1
|
|
|
85 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
86 |
|
87 |
# Labels
|
88 |
class_idx=None
|