File size: 1,329 Bytes
87d0def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import streamlit as st
import torch
from PIL import Image
import requests
from transformers import BlipForConditionalGeneration, BlipForQuestionAnswering, BlipProcessor


## Loading BLIP image caption model
processor = BlipProcessor.from_pretrained("adit94/blip_humour")
model = BlipForConditionalGeneration.from_pretrained("adit94/blip_humour")

device = "cuda" if torch.cuda.is_available() else "cpu"


def blip_generate(prompt, img):
    #raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
    img = img.convert('RGB')
    inputs = processor(img, return_tensors="pt").to(device)
    
    outputs = model.generate(
        **inputs,
        do_sample=False,
        num_beams=5,
        max_length=256,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1.5,
        length_penalty=1.0,
        temperature=1,
    )

    generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()

    return generated_text

st.set_page_config(
    page_title="Humour Detection",
    initial_sidebar_state = 'auto'
)

file = st.file_uploader("", type=["jpg", "png"])

if file is None:
    st.text("Please upload an image file")
else:
    image = Image.open(file)
    st.image(image)

    caption = blip_generate()

    st.text('Predicted output')
    st.text(caption)