File size: 10,736 Bytes
184f591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from pprint import pprint
import json

from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider, NlpArtifacts
from presidio_analyzer import PatternRecognizer
from presidio_analyzer import Pattern, PatternRecognizer
from presidio_analyzer.predefined_recognizers import SpacyRecognizer
from presidio_analyzer.predefined_recognizers import IbanRecognizer, EmailRecognizer, IpRecognizer,\
EmailRecognizer, PhoneRecognizer, UrlRecognizer, DateRecognizer

from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig

import logging
from typing import Optional, List, Tuple, Set
from presidio_analyzer import (
    RecognizerResult,
    EntityRecognizer,
    AnalysisExplanation,
)

from flair.data import Sentence
from flair.models import SequenceTagger

### Creating FlairRecognizer class for NER(names, location)

class FlairRecognizer(EntityRecognizer):
   
    ENTITIES = [
        "LOCATION",
        "PERSON",
        "ORGANIZATION",
        # "MISCELLANEOUS"   # - There are no direct correlation with Presidio entities.
    ]

    DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"

    CHECK_LABEL_GROUPS = [
        ({"LOCATION"}, {"LOC", "LOCATION"}),
        ({"PERSON"}, {"PER", "PERSON"}),
        ({"ORGANIZATION"}, {"ORG"}),
        # ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
    ]

    MODEL_LANGUAGES = {
        #"en": "flair/ner-english-large",
        #"es": "flair/ner-spanish-large",
        "de": "flair/ner-german-large",
        #"nl": "flair/ner-dutch-large",
    }

    PRESIDIO_EQUIVALENCES = {
        "PER": "PERSON",
        "LOC": "LOCATION",
        "ORG": "ORGANIZATION",
        # 'MISC': 'MISCELLANEOUS'   # - Probably not PII
    }

    def __init__(
        self,
        supported_language: str = "en",
        supported_entities: Optional[List[str]] = None,
        check_label_groups: Optional[Tuple[Set, Set]] = None,
        model: SequenceTagger = None,
    ):
        self.check_label_groups = (
            check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
        )

        supported_entities = supported_entities if supported_entities else self.ENTITIES
        self.model = (
            model
            if model
            else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
        )

        super().__init__(
            supported_entities=supported_entities,
            supported_language=supported_language,
            name="Flair Analytics",
        )
        print("Flair class initialized")

    def load(self) -> None:
        """Load the model, not used. Model is loaded during initialization."""
        pass

    def get_supported_entities(self) -> List[str]:
        """
        Return supported entities by this model.

        :return: List of the supported entities.
        """
        return self.supported_entities

    # Class to use Flair with Presidio as an external recognizer.
    def analyze(
        self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
    ) -> List[RecognizerResult]:
        """
        Analyze text using Text Analytics.

        :param text: The text for analysis.
        :param entities: Not working properly for this recognizer.
        :param nlp_artifacts: Not used by this recognizer.
        :param language: Text language. Supported languages in MODEL_LANGUAGES
        :return: The list of Presidio RecognizerResult constructed from the recognized
            Flair detections.
        """

        results = []

        sentences = Sentence(text)
        self.model.predict(sentences)

        # If there are no specific list of entities, we will look for all of it.
        if not entities:
            entities = self.supported_entities

        for entity in entities:
            if entity not in self.supported_entities:
                continue

            for ent in sentences.get_spans("ner"):
                if not self.__check_label(
                    entity, ent.labels[0].value, self.check_label_groups
                ):
                    continue
                textual_explanation = self.DEFAULT_EXPLANATION.format(
                    ent.labels[0].value
                )
                explanation = self.build_flair_explanation(
                    round(ent.score, 2), textual_explanation
                )
                flair_result = self._convert_to_recognizer_result(ent, explanation)

                results.append(flair_result)

        return results

    def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:

        entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
        flair_score = round(entity.score, 2)

        flair_results = RecognizerResult(
            entity_type=entity_type,
            start=entity.start_position,
            end=entity.end_position,
            score=flair_score,
            analysis_explanation=explanation,
        )

        return flair_results

    def build_flair_explanation(
        self, original_score: float, explanation: str
    ) -> AnalysisExplanation:
        """
        Create explanation for why this result was detected.

        :param original_score: Score given by this recognizer
        :param explanation: Explanation string
        :return:
        """
        explanation = AnalysisExplanation(
            recognizer=self.__class__.__name__,
            original_score=original_score,
            textual_explanation=explanation,
        )
        return explanation

    @staticmethod
    def __check_label(
        entity: str, label: str, check_label_groups: Tuple[Set, Set]
    ) -> bool:
        return any(
            [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
        )
    

class PII_IDENTIFIER:
    def __init__(self):

        configuration = {
            "nlp_engine_name": "spacy",
            "models": [
                {"lang_code": "de", "model_name": "de_core_news_sm"}
            ],
        }

        # Create NLP engine based on configuration
        provider = NlpEngineProvider(nlp_configuration=configuration)
        nlp_engine = provider.create_engine()

        ## Creating regex for PatternRecognizers - SWIFT, vehicle number, zipcode, ssn
        swift_regex = r"\b[A-Z]{4}DE[A-Z0-9]{2}(?:[A-Z0-9]{3})?"
        vehicle_number_with_hyphen_regex = r"\b[A-ZÄÖÜ]{1,3}-[A-ZÄÖÜ]{1,2}-[0-9]{1,4}" 
        vehicle_number_without_hyphen_regex = r"\b[A-ZÄÖÜ]{1,3}[A-ZÄÖÜ]{1,2}[0-9]{1,4}"
        german_zipcode_regex = r"\b((?:0[1-46-9]\d{3})|(?:[1-357-9]\d{4})|(?:[4][0-24-9]\d{3})|(?:[6][013-9]\d{3}))\b(?![\d/])"
        german_ssn_regex = r"\b\d{2}\s?\d{6}\s?[A-Z]\s?\d{3}\b"
        # Creating Presidio pattern object
        vehicle_numbers_pattern1 = Pattern(name="vehicle_pattern", regex=vehicle_number_without_hyphen_regex, score=1)
        vehicle_numbers_pattern2 = Pattern(name="vehicle_pattern", regex=vehicle_number_with_hyphen_regex, score=1)
        swift_pattern = Pattern(name="bank_swift_pattern", regex=swift_regex, score=1)
        germanzipcode_pattern = Pattern(name="german_zip_pattern",regex=german_zipcode_regex, score=1)
        german_ssn_pattern = Pattern(name="german_ssn_pattern",regex=german_ssn_regex, score=1)

        # Define the recognizer
        swift_recognizer = PatternRecognizer(supported_entity="SWIFT", supported_language="de",patterns=[swift_pattern])
        vehicle_number_recognizer = PatternRecognizer(supported_entity="VEHICLE_NUMBER", supported_language="de",patterns=[vehicle_numbers_pattern1,vehicle_numbers_pattern2])
        germanzip_recognizer = PatternRecognizer(supported_entity="GERMAN_ZIP", supported_language="de",patterns=[germanzipcode_pattern])
        germanssn_recognizer = PatternRecognizer(supported_entity="GERMAN_SSN", supported_language="de",patterns=[german_ssn_pattern])

        ## Lading flair entity model for person, location ID
        print("Loading flair")
        flair_recognizer = FlairRecognizer(supported_language="de")
        print("Flair loaded")

        registry = RecognizerRegistry()
        #registry.load_predefined_recognizers()
        #registry.add_recognizer(SpacyRecognizer(supported_language="de"))
        #registry.add_recognizer(SpacyRecognizer(supported_language="en"))

        registry.remove_recognizer("SpacyRecognizer")
        registry.add_recognizer(flair_recognizer)

        registry.add_recognizer(swift_recognizer)
        registry.add_recognizer(vehicle_number_recognizer)
        registry.add_recognizer(germanzip_recognizer)
        registry.add_recognizer(germanssn_recognizer)

        ## Adding predefined recognizers
        registry.add_recognizer(IbanRecognizer(supported_language="de"))
        registry.add_recognizer(DateRecognizer(supported_language="de"))
        registry.add_recognizer(EmailRecognizer(supported_language="de"))
        registry.add_recognizer(IpRecognizer(supported_language="de"))
        registry.add_recognizer(PhoneRecognizer(supported_language="de"))
        registry.add_recognizer(UrlRecognizer(supported_language="de"))
        registry.add_recognizer(PhoneRecognizer(supported_language="de"))
        print("Recognizer registry loaded")

        self.analyzer = AnalyzerEngine(registry=registry, nlp_engine=nlp_engine, supported_languages=["de"])

        #print(f"Type of recognizers ::\n {self.analyzer.registry.recognizers}")
        print("PII initialized")

        self.anonymizer = AnonymizerEngine()
    
    def identify(self, text):
        results_de = self.analyzer.analyze(
            text,
            language='de'
        )

        anonymized_results = self.anonymize(results_de, text)
        entities = []

        for result in results_de:
            result_dict = result.to_dict()
            temp_entity = {
                "start":result_dict['start'],
                "end":result_dict['end'],
                "entity_type":result_dict['entity_type'],
                "score":result_dict['score'],
                "word":text[result_dict['start']:result_dict['end']]
            }
            entities.append(temp_entity)
        
        return {"entities":entities, "text":text, "anonymized_text":anonymized_results['text']}
    
    def anonymize(self, entities, text):
        anonymized_results = self.anonymizer.anonymize(
            text=text,
            analyzer_results=entities,
            #operators={"DEFAULT": OperatorConfig("replace", {"new_value": "<ANONYMIZED>"})},
        )

        return json.loads(anonymized_results.to_json())
    
    def remove_overlapping_entities(entities):

        return