Spaces:
Runtime error
Runtime error
File size: 1,395 Bytes
d901185 dc1cf62 d901185 4940531 dc1cf62 0c28d49 4940531 0c28d49 d901185 d0cf39e d901185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import torch
import gradio as gr
from transformers import (PegasusForConditionalGeneration, PegasusTokenizer)
best_model_path = "aditi2222/paragus_models"
model = PegasusForConditionalGeneration.from_pretrained(best_model_path)
#tokenizer = PegasusTokenizer.from_pretrained('google/pegasus-xsum')
tokenizer = PegasusTokenizer.from_pretrained('aditi2222/paragus_models')
def tokenize_data(text):
# Tokenize the review body
input_ = str(text) + ' </s>'
max_len = 64
# tokenize inputs
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
inputs={"input_ids": tokenized_inputs['input_ids'],
"attention_mask": tokenized_inputs['attention_mask']}
return inputs
def generate_answers(text):
inputs = tokenize_data(text)
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
max_length=64,
top_k=120,
top_p=0.98,
early_stopping=True,
num_return_sequences=1)
answer = tokenizer.decode(results[0], skip_special_tokens=True)
return answer
iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"])
iface.launch(inline=False, share=True) |