Spaces:
Runtime error
Runtime error
Al John Lexter Lozano
commited on
Commit
•
ead2dcb
1
Parent(s):
d945311
Initial commit-make model as importable module and add simple gradio interface
Browse files- LICENSE +21 -0
- README.md +2 -0
- README.rst +47 -0
- app.py +46 -0
- bad.txt +5 -0
- big.txt +0 -0
- demo_bad.txt +5 -0
- demo_blank.csv +5 -0
- gib_detect.py +12 -0
- gib_detect_module.py +11 -0
- gib_detect_train.py +75 -0
- gib_model.pki +764 -0
- good.txt +6 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The MIT License (MIT)
|
2 |
+
|
3 |
+
Copyright (c) 2015 Rob Renaud
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in
|
13 |
+
all copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21 |
+
THE SOFTWARE.
|
README.md
CHANGED
@@ -10,3 +10,5 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
13 |
+
|
14 |
+
A gibberish detection program based on https://github.com/rrenaud/Gibberish-Detector deployed in Gradio.
|
README.rst
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Overview
|
2 |
+
========
|
3 |
+
|
4 |
+
A sample program I wrote to detect gibberish. It uses a 2 character markov chain.
|
5 |
+
|
6 |
+
http://en.wikipedia.org/wiki/Markov_chain
|
7 |
+
|
8 |
+
This is a nice (IMO) answer to this guys question on stackoverflow.
|
9 |
+
http://stackoverflow.com/questions/6297991/is-there-any-way-to-detect-strings-like-putjbtghguhjjjanika/6298040#comment-7360747
|
10 |
+
|
11 |
+
Usage
|
12 |
+
=====
|
13 |
+
|
14 |
+
First train the model:
|
15 |
+
|
16 |
+
python gib_detect_train.py
|
17 |
+
|
18 |
+
Then try it on some sample input
|
19 |
+
|
20 |
+
python gib_detect.py
|
21 |
+
|
22 |
+
my name is rob and i like to hack True
|
23 |
+
|
24 |
+
is this thing working? True
|
25 |
+
|
26 |
+
i hope so True
|
27 |
+
|
28 |
+
t2 chhsdfitoixcv False
|
29 |
+
|
30 |
+
ytjkacvzw False
|
31 |
+
|
32 |
+
yutthasxcvqer False
|
33 |
+
|
34 |
+
seems okay True
|
35 |
+
|
36 |
+
yay! True
|
37 |
+
|
38 |
+
How it works
|
39 |
+
============
|
40 |
+
The markov chain first 'trains' or 'studies' a few MB of English text, recording how often characters appear next to each other. Eg, given the text "Rob likes hacking" it sees Ro, ob, o[space], [space]l, ... It just counts these pairs. After it has finished reading through the training data, it normalizes the counts. Then each character has a probability distribution of 27 followup character (26 letters + space) following the given initial.
|
41 |
+
|
42 |
+
So then given a string, it measures the probability of generating that string according to the summary by just multiplying out the probabilities of the adjacent pairs of characters in that string. EG, for that "Rob likes hacking" string, it would compute prob['r']['o'] * prob['o']['b'] * prob['b'][' '] ... This probability then measures the amount of 'surprise' assigned to this string according the data the model observed when training. If there is funny business with the input string, it will pass through some pairs with very low counts in the training phase, and hence have low probability/high surprise.
|
43 |
+
|
44 |
+
I then look at the amount of surprise per character for a few known good strings, and a few known bad strings, and pick a threshold between the most surprising good string and the least surprising bad string. Then I use that threshold whenever to classify any new piece of text.
|
45 |
+
|
46 |
+
Peter Norvig, the director of Research at Google, has this nice talk about "The unreasonable effectiveness of data" here, http://www.youtube.com/watch?v=9vR8Vddf7-s. This insight is really not to try to do something complicated, just write a small program that utilizes a bunch of data and you can do cool things.
|
47 |
+
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import File
|
2 |
+
import gradio as gr
|
3 |
+
from gib_detect_module import detect
|
4 |
+
import csv
|
5 |
+
|
6 |
+
def greet(name):
|
7 |
+
return "Hello " + name + "!!"
|
8 |
+
|
9 |
+
def detect_gibberish(line,f):
|
10 |
+
|
11 |
+
if line:
|
12 |
+
if detect(line):
|
13 |
+
return "Valid!!!!", None
|
14 |
+
else:
|
15 |
+
return "Bollocks Giberrish",None
|
16 |
+
elif f:
|
17 |
+
return None, annotate_csv(f)
|
18 |
+
|
19 |
+
|
20 |
+
def annotate_csv(f):
|
21 |
+
with open(f.name) as csvfile:
|
22 |
+
creader = csv.reader(csvfile, delimiter=',', quotechar='"')
|
23 |
+
|
24 |
+
with open('out.csv', 'w', newline='') as csvout:
|
25 |
+
cwriter = csv.writer(csvout, delimiter=',',
|
26 |
+
quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
27 |
+
for row in creader:
|
28 |
+
print(row)
|
29 |
+
row.append(str(detect(row[0])))
|
30 |
+
cwriter.writerow(row)
|
31 |
+
|
32 |
+
|
33 |
+
return "out.csv"
|
34 |
+
|
35 |
+
inputFile=gr.inputs.File(file_count="single", type="file", label="File to Annotate", optional=True)
|
36 |
+
outputFile=gr.outputs.File( label="Annotated CSV")
|
37 |
+
|
38 |
+
examples=[
|
39 |
+
["quetzalcoatl","demo_blank.csv"],
|
40 |
+
["Shinkansen","demo_blank.csv"],
|
41 |
+
["aasdf","demo_blank.csv"],
|
42 |
+
["Covfefe","demo_blank.csv"]
|
43 |
+
]
|
44 |
+
iface = gr.Interface(fn=[detect_gibberish], inputs=["text",inputFile], outputs=["text",outputFile],examples=examples, allow_flagging='never')
|
45 |
+
|
46 |
+
iface.launch()
|
bad.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
zxcvwerjasc
|
2 |
+
nmnjcviburili,<>
|
3 |
+
zxcvnadtruqe
|
4 |
+
ertrjiloifdfyyoiu
|
5 |
+
grty iuewdiivjh
|
big.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
demo_bad.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"zxcvwerjasc"
|
2 |
+
"nmnjcviburili,<>"
|
3 |
+
"zxcvnadtruqe"
|
4 |
+
"ertrjiloifdfyyoiu"
|
5 |
+
"grty iuewdiivjh"
|
demo_blank.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"zxcvwerjasc"
|
2 |
+
"nmnjcviburili,<>"
|
3 |
+
"zxcvnadtruqe"
|
4 |
+
"ertrjiloifdfyyoiu"
|
5 |
+
"grty iuewdiivjh"
|
gib_detect.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
import pickle
|
4 |
+
import gib_detect_train
|
5 |
+
|
6 |
+
model_data = pickle.load(open('gib_model.pki', 'rb'))
|
7 |
+
|
8 |
+
while True:
|
9 |
+
l = raw_input()
|
10 |
+
model_mat = model_data['mat']
|
11 |
+
threshold = model_data['thresh']
|
12 |
+
print gib_detect_train.avg_transition_prob(l, model_mat) > threshold
|
gib_detect_module.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
import pickle
|
4 |
+
import gib_detect_train
|
5 |
+
|
6 |
+
model_data = pickle.load(open('gib_model.pki', 'rb'))
|
7 |
+
|
8 |
+
def detect(text):
|
9 |
+
model_mat = model_data['mat']
|
10 |
+
threshold = model_data['thresh']
|
11 |
+
return gib_detect_train.avg_transition_prob(text, model_mat) > threshold
|
gib_detect_train.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
import math
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
accepted_chars = 'abcdefghijklmnopqrstuvwxyz '
|
7 |
+
|
8 |
+
pos = dict([(char, idx) for idx, char in enumerate(accepted_chars)])
|
9 |
+
|
10 |
+
def normalize(line):
|
11 |
+
""" Return only the subset of chars from accepted_chars.
|
12 |
+
This helps keep the model relatively small by ignoring punctuation,
|
13 |
+
infrequenty symbols, etc. """
|
14 |
+
return [c.lower() for c in line if c.lower() in accepted_chars]
|
15 |
+
|
16 |
+
def ngram(n, l):
|
17 |
+
""" Return all n grams from l after normalizing """
|
18 |
+
filtered = normalize(l)
|
19 |
+
for start in range(0, len(filtered) - n + 1):
|
20 |
+
yield ''.join(filtered[start:start + n])
|
21 |
+
|
22 |
+
def train():
|
23 |
+
""" Write a simple model as a pickle file """
|
24 |
+
k = len(accepted_chars)
|
25 |
+
# Assume we have seen 10 of each character pair. This acts as a kind of
|
26 |
+
# prior or smoothing factor. This way, if we see a character transition
|
27 |
+
# live that we've never observed in the past, we won't assume the entire
|
28 |
+
# string has 0 probability.
|
29 |
+
counts = [[10 for i in xrange(k)] for i in xrange(k)]
|
30 |
+
|
31 |
+
# Count transitions from big text file, taken
|
32 |
+
# from http://norvig.com/spell-correct.html
|
33 |
+
for line in open('big.txt'):
|
34 |
+
for a, b in ngram(2, line):
|
35 |
+
counts[pos[a]][pos[b]] += 1
|
36 |
+
|
37 |
+
# Normalize the counts so that they become log probabilities.
|
38 |
+
# We use log probabilities rather than straight probabilities to avoid
|
39 |
+
# numeric underflow issues with long texts.
|
40 |
+
# This contains a justification:
|
41 |
+
# http://squarecog.wordpress.com/2009/01/10/dealing-with-underflow-in-joint-probability-calculations/
|
42 |
+
for i, row in enumerate(counts):
|
43 |
+
s = float(sum(row))
|
44 |
+
for j in xrange(len(row)):
|
45 |
+
row[j] = math.log(row[j] / s)
|
46 |
+
|
47 |
+
# Find the probability of generating a few arbitrarily choosen good and
|
48 |
+
# bad phrases.
|
49 |
+
good_probs = [avg_transition_prob(l, counts) for l in open('good.txt')]
|
50 |
+
bad_probs = [avg_transition_prob(l, counts) for l in open('bad.txt')]
|
51 |
+
|
52 |
+
# Assert that we actually are capable of detecting the junk.
|
53 |
+
assert min(good_probs) > max(bad_probs)
|
54 |
+
|
55 |
+
# And pick a threshold halfway between the worst good and best bad inputs.
|
56 |
+
thresh = (min(good_probs) + max(bad_probs)) / 2
|
57 |
+
pickle.dump({'mat': counts, 'thresh': thresh}, open('gib_model.pki', 'wb'))
|
58 |
+
|
59 |
+
def avg_transition_prob(l, log_prob_mat):
|
60 |
+
""" Return the average transition prob from l through log_prob_mat. """
|
61 |
+
log_prob = 0.0
|
62 |
+
transition_ct = 0
|
63 |
+
for a, b in ngram(2, l):
|
64 |
+
log_prob += log_prob_mat[pos[a]][pos[b]]
|
65 |
+
transition_ct += 1
|
66 |
+
# The exponentiation translates from log probs to probs.
|
67 |
+
return math.exp(log_prob / (transition_ct or 1))
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
train()
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
gib_model.pki
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(dp0
|
2 |
+
S'thresh'
|
3 |
+
p1
|
4 |
+
F0.018782003473122023
|
5 |
+
sS'mat'
|
6 |
+
p2
|
7 |
+
(lp3
|
8 |
+
(lp4
|
9 |
+
F-8.569137312930899
|
10 |
+
aF-3.9369332597631863
|
11 |
+
aF-3.220670162697391
|
12 |
+
aF-3.0482479869676102
|
13 |
+
aF-6.052279063336297
|
14 |
+
aF-4.69956099775001
|
15 |
+
aF-3.9941585968087816
|
16 |
+
aF-6.710407217596661
|
17 |
+
aF-3.2453041060602184
|
18 |
+
aF-7.060740255010108
|
19 |
+
aF-4.512283359624297
|
20 |
+
aF-2.4997201529644935
|
21 |
+
aF-3.642636781640966
|
22 |
+
aF-1.5707462805725019
|
23 |
+
aF-7.978468801653891
|
24 |
+
aF-3.8936418102220776
|
25 |
+
aF-9.821900281426267
|
26 |
+
aF-2.3025283782801376
|
27 |
+
aF-2.348366425382398
|
28 |
+
aF-1.9448651421947813
|
29 |
+
aF-4.539158126663701
|
30 |
+
aF-3.871849760115083
|
31 |
+
aF-4.706359120463831
|
32 |
+
aF-6.560313338465017
|
33 |
+
aF-3.649725323207633
|
34 |
+
aF-6.641954302926283
|
35 |
+
aF-2.7134701747591117
|
36 |
+
aa(lp5
|
37 |
+
F-2.5528619980785
|
38 |
+
aF-5.139226208055755
|
39 |
+
aF-6.049719822245583
|
40 |
+
aF-6.219404795035026
|
41 |
+
aF-1.173596307609444
|
42 |
+
aF-8.563954087128105
|
43 |
+
aF-8.805116143944993
|
44 |
+
aF-8.494961215641153
|
45 |
+
aF-3.3328454702735173
|
46 |
+
aF-5.004532700251055
|
47 |
+
aF-8.805116143944993
|
48 |
+
aF-2.139085063222716
|
49 |
+
aF-6.121607051758899
|
50 |
+
aF-6.808562262070924
|
51 |
+
aF-2.1459387811703974
|
52 |
+
aF-8.312639658847198
|
53 |
+
aF-8.900426323749317
|
54 |
+
aF-2.719375008855968
|
55 |
+
aF-3.788438535392774
|
56 |
+
aF-4.703224376087508
|
57 |
+
aF-2.137350056136624
|
58 |
+
aF-6.320209494156992
|
59 |
+
aF-7.676650892127201
|
60 |
+
aF-8.900426323749317
|
61 |
+
aF-2.3611294272462486
|
62 |
+
aF-8.900426323749317
|
63 |
+
aF-4.738423113053401
|
64 |
+
aa(lp6
|
65 |
+
F-2.08946313988477
|
66 |
+
aF-9.398284978640158
|
67 |
+
aF-3.8466182187208457
|
68 |
+
aF-7.678499009037193
|
69 |
+
aF-1.7391136109740999
|
70 |
+
aF-8.792149175069843
|
71 |
+
aF-9.580606535434113
|
72 |
+
aF-1.9093388132314668
|
73 |
+
aF-2.9331775988939013
|
74 |
+
aF-9.485296355629789
|
75 |
+
aF-3.343650033348159
|
76 |
+
aF-3.276523430584318
|
77 |
+
aF-8.515895798441685
|
78 |
+
aF-8.838669190704735
|
79 |
+
aF-1.6000355228278762
|
80 |
+
aF-9.485296355629789
|
81 |
+
aF-6.386023403134956
|
82 |
+
aF-3.377666241879603
|
83 |
+
aF-5.838186314392146
|
84 |
+
aF-2.3909106346293085
|
85 |
+
aF-3.2184408726543063
|
86 |
+
aF-9.485296355629789
|
87 |
+
aF-8.838669190704735
|
88 |
+
aF-9.580606535434113
|
89 |
+
aF-4.621264535725407
|
90 |
+
aF-8.299672689972049
|
91 |
+
aF-3.8668737299247438
|
92 |
+
aa(lp7
|
93 |
+
F-3.7200475908408235
|
94 |
+
aF-7.418434550575756
|
95 |
+
aF-7.88681348409449
|
96 |
+
aF-4.564865474086475
|
97 |
+
aF-1.9699465394791131
|
98 |
+
aF-6.796896902393934
|
99 |
+
aF-5.430448837645974
|
100 |
+
aF-6.754155354016663
|
101 |
+
aF-2.4627220077183942
|
102 |
+
aF-6.277375571660389
|
103 |
+
aF-7.666270714480338
|
104 |
+
aF-4.558326450319418
|
105 |
+
aF-5.5188785108919935
|
106 |
+
aF-5.946484744877372
|
107 |
+
aF-3.117009722931763
|
108 |
+
aF-8.380471304238116
|
109 |
+
aF-8.136274343726074
|
110 |
+
aF-3.6243165394601604
|
111 |
+
aF-3.6811521539816408
|
112 |
+
aF-7.1936663035345445
|
113 |
+
aF-3.9941983786827824
|
114 |
+
aF-5.568764165402863
|
115 |
+
aF-7.077327311450395
|
116 |
+
aF-9.928033812954128
|
117 |
+
aF-4.613843097249801
|
118 |
+
aF-9.745712256160173
|
119 |
+
aF-0.5394468422260206
|
120 |
+
aa(lp8
|
121 |
+
F-3.0956911156796725
|
122 |
+
aF-6.3279563530093395
|
123 |
+
aF-3.711394117529345
|
124 |
+
aF-2.414309096615009
|
125 |
+
aF-3.7280101535107066
|
126 |
+
aF-4.555095809949321
|
127 |
+
aF-4.9582369569836615
|
128 |
+
aF-6.340824177620733
|
129 |
+
aF-4.465115884463944
|
130 |
+
aF-8.043262266521952
|
131 |
+
aF-7.012917948982845
|
132 |
+
aF-3.4395652463282116
|
133 |
+
aF-3.7489856294972617
|
134 |
+
aF-2.389153595060143
|
135 |
+
aF-5.281198278652138
|
136 |
+
aF-4.426598784036354
|
137 |
+
aF-6.265131628349503
|
138 |
+
aF-1.976271246918681
|
139 |
+
aF-2.519225987547763
|
140 |
+
aF-3.7331106440131854
|
141 |
+
aF-6.05129367580717
|
142 |
+
aF-4.115226028040922
|
143 |
+
aF-4.719249301196115
|
144 |
+
aF-4.451178867151557
|
145 |
+
aF-4.535588241035776
|
146 |
+
aF-7.731754615658102
|
147 |
+
aF-1.1291364595675442
|
148 |
+
aa(lp9
|
149 |
+
F-2.7634422911455703
|
150 |
+
aF-7.9114774546442685
|
151 |
+
aF-7.529542843946299
|
152 |
+
aF-8.494623739989885
|
153 |
+
aF-2.451100566435661
|
154 |
+
aF-2.926120215794328
|
155 |
+
aF-7.612234559791412
|
156 |
+
aF-8.53718335440868
|
157 |
+
aF-2.4505074466080714
|
158 |
+
aF-9.033620240722573
|
159 |
+
aF-8.72823859117139
|
160 |
+
aF-3.748243385450271
|
161 |
+
aF-8.839464226281615
|
162 |
+
aF-7.66534438510536
|
163 |
+
aF-1.9043799278633868
|
164 |
+
aF-8.305381740351358
|
165 |
+
aF-9.370092477343785
|
166 |
+
aF-2.3558173549839756
|
167 |
+
aF-5.929674382528349
|
168 |
+
aF-3.315653131074415
|
169 |
+
aF-3.5058932812816797
|
170 |
+
aF-9.370092477343785
|
171 |
+
aF-7.801476559429941
|
172 |
+
aF-9.370092477343785
|
173 |
+
aF-6.135343303319295
|
174 |
+
aF-9.370092477343785
|
175 |
+
aF-0.9976707550554195
|
176 |
+
aa(lp10
|
177 |
+
F-2.681117318742622
|
178 |
+
aF-8.560252680876685
|
179 |
+
aF-8.083328608786376
|
180 |
+
aF-6.8862762473050125
|
181 |
+
aF-1.9631827738890724
|
182 |
+
aF-7.924263914156688
|
183 |
+
aF-4.61975020412667
|
184 |
+
aF-2.2213641819441556
|
185 |
+
aF-2.8612966495974126
|
186 |
+
aF-9.148039345778804
|
187 |
+
aF-8.560252680876685
|
188 |
+
aF-3.35807917488155
|
189 |
+
aF-6.075346031088684
|
190 |
+
aF-3.7399711152716475
|
191 |
+
aF-2.831958278425978
|
192 |
+
aF-7.954116877306369
|
193 |
+
aF-9.052729165974478
|
194 |
+
aF-2.5526687518888194
|
195 |
+
aF-4.062915199691808
|
196 |
+
aF-4.943346726387837
|
197 |
+
aF-3.494498087559349
|
198 |
+
aF-9.148039345778804
|
199 |
+
aF-7.579423427864958
|
200 |
+
aF-9.148039345778804
|
201 |
+
aF-5.882279935011752
|
202 |
+
aF-8.617411094716633
|
203 |
+
aF-1.0302198528344138
|
204 |
+
aa(lp11
|
205 |
+
F-1.8949866865832032
|
206 |
+
aF-7.38720654177459
|
207 |
+
aF-8.05310407988716
|
208 |
+
aF-7.542278456121169
|
209 |
+
aF-0.7286353651447546
|
210 |
+
aF-7.858315754328075
|
211 |
+
aF-9.589971299486425
|
212 |
+
aF-8.779041083270096
|
213 |
+
aF-1.9951372153459488
|
214 |
+
aF-10.100796923252416
|
215 |
+
aF-7.885223207247999
|
216 |
+
aF-6.635061020452689
|
217 |
+
aF-6.261344610659105
|
218 |
+
aF-6.705170586639715
|
219 |
+
aF-2.5617698674284206
|
220 |
+
aF-9.253499062865211
|
221 |
+
aF-10.100796923252416
|
222 |
+
aF-4.5720294302077304
|
223 |
+
aF-6.222675469499951
|
224 |
+
aF-3.764561336708525
|
225 |
+
aF-4.622243506401445
|
226 |
+
aF-9.541181135316993
|
227 |
+
aF-7.3816968859636205
|
228 |
+
aF-10.28311848004637
|
229 |
+
aF-5.024581983510178
|
230 |
+
aF-10.187808300242045
|
231 |
+
aF-2.3623088007577695
|
232 |
+
aa(lp12
|
233 |
+
F-3.712244886548001
|
234 |
+
aF-4.717475282130211
|
235 |
+
aF-2.783984370515817
|
236 |
+
aF-3.2216013768067646
|
237 |
+
aF-3.1683365236496233
|
238 |
+
aF-3.90382545586124
|
239 |
+
aF-3.680790547058952
|
240 |
+
aF-9.119304544100272
|
241 |
+
aF-6.422989599216483
|
242 |
+
aF-10.323277348426208
|
243 |
+
aF-5.240838322200969
|
244 |
+
aF-3.0795261367137394
|
245 |
+
aF-3.173687619686372
|
246 |
+
aF-1.3126793991869439
|
247 |
+
aF-2.664381175855551
|
248 |
+
aF-4.9236074876178835
|
249 |
+
aF-7.895529112478156
|
250 |
+
aF-3.409705684122631
|
251 |
+
aF-2.051579832828198
|
252 |
+
aF-2.1011937452905483
|
253 |
+
aF-6.511074678280273
|
254 |
+
aF-3.8167461832949807
|
255 |
+
aF-9.672689782285058
|
256 |
+
aF-6.168308164387673
|
257 |
+
aF-10.410288725415837
|
258 |
+
aF-5.511770729440288
|
259 |
+
aF-3.788398987959084
|
260 |
+
aa(lp13
|
261 |
+
F-2.3427609160575655
|
262 |
+
aF-6.1024094410597085
|
263 |
+
aF-6.037870919922137
|
264 |
+
aF-6.507874549167873
|
265 |
+
aF-1.4153520955994334
|
266 |
+
aF-6.245510284700382
|
267 |
+
aF-6.17140231254666
|
268 |
+
aF-6.325552992373918
|
269 |
+
aF-5.51462277615759
|
270 |
+
aF-6.507874549167873
|
271 |
+
aF-6.245510284700382
|
272 |
+
aF-6.412564369363548
|
273 |
+
aF-6.325552992373918
|
274 |
+
aF-6.507874549167873
|
275 |
+
aF-1.2783714986201964
|
276 |
+
aF-6.412564369363548
|
277 |
+
aF-6.325552992373918
|
278 |
+
aF-6.1024094410597085
|
279 |
+
aF-6.1024094410597085
|
280 |
+
aF-6.245510284700382
|
281 |
+
aF-1.1002544477293865
|
282 |
+
aF-6.507874549167873
|
283 |
+
aF-6.245510284700382
|
284 |
+
aF-6.507874549167873
|
285 |
+
aF-6.507874549167873
|
286 |
+
aF-6.507874549167873
|
287 |
+
aF-4.859215923580492
|
288 |
+
aa(lp14
|
289 |
+
F-3.6194933584945135
|
290 |
+
aF-7.047703539402737
|
291 |
+
aF-6.062419936041631
|
292 |
+
aF-7.671857848475732
|
293 |
+
aF-1.2114318817004575
|
294 |
+
aF-6.285563487355841
|
295 |
+
aF-6.824559988088527
|
296 |
+
aF-3.6311485020862624
|
297 |
+
aF-1.7851984157338754
|
298 |
+
aF-7.814958692116405
|
299 |
+
aF-7.489536291681777
|
300 |
+
aF-3.88766821455747
|
301 |
+
aF-6.036102627724257
|
302 |
+
aF-2.3543916630889337
|
303 |
+
aF-3.8417682258102714
|
304 |
+
aF-7.546694705521725
|
305 |
+
aF-7.9820127767795706
|
306 |
+
aF-5.48206824962703
|
307 |
+
aF-3.0008999219496366
|
308 |
+
aF-6.6910285954640045
|
309 |
+
aF-3.73872587983735
|
310 |
+
aF-7.2444138336487915
|
311 |
+
aF-5.438265626968637
|
312 |
+
aF-8.077322956583895
|
313 |
+
aF-4.682814563072537
|
314 |
+
aF-8.077322956583895
|
315 |
+
aF-1.4288566755523215
|
316 |
+
aa(lp15
|
317 |
+
F-2.269183388314388
|
318 |
+
aF-6.573297799694782
|
319 |
+
aF-5.745479365449931
|
320 |
+
aF-2.8596367214634224
|
321 |
+
aF-1.7841347050080587
|
322 |
+
aF-4.144047900909572
|
323 |
+
aF-6.844091654118041
|
324 |
+
aF-7.7437746495925355
|
325 |
+
aF-2.175115871017978
|
326 |
+
aF-9.701519256294851
|
327 |
+
aF-4.956587127931601
|
328 |
+
aF-2.065933606191924
|
329 |
+
aF-5.060338632783727
|
330 |
+
aF-6.492693767280152
|
331 |
+
aF-2.4508837443961715
|
332 |
+
aF-5.604400767190025
|
333 |
+
aF-9.701519256294851
|
334 |
+
aF-5.648286082315182
|
335 |
+
aF-3.879460040714278
|
336 |
+
aF-3.864517937852428
|
337 |
+
aF-3.8209862698941515
|
338 |
+
aF-5.091361528795721
|
339 |
+
aF-5.466205750947557
|
340 |
+
aF-9.883840813088806
|
341 |
+
aF-2.333600268348952
|
342 |
+
aF-8.602906967626742
|
343 |
+
aF-2.0434097729831913
|
344 |
+
aa(lp16
|
345 |
+
F-1.7539942375247688
|
346 |
+
aF-3.6841198980845076
|
347 |
+
aF-6.559311098803656
|
348 |
+
aF-8.439623965373157
|
349 |
+
aF-1.3654444296574595
|
350 |
+
aF-6.4075846625879045
|
351 |
+
aF-9.337565558579115
|
352 |
+
aF-8.238953269911006
|
353 |
+
aF-2.4389427631602505
|
354 |
+
aF-9.17051147391595
|
355 |
+
aF-8.902247487321269
|
356 |
+
aF-6.206031743866062
|
357 |
+
aF-3.641082386404525
|
358 |
+
aF-5.662416297277081
|
359 |
+
aF-2.2280575251437695
|
360 |
+
aF-2.6972144960398214
|
361 |
+
aF-9.432875738383439
|
362 |
+
aF-5.501050105659114
|
363 |
+
aF-3.5381974599631496
|
364 |
+
aF-6.907147094075184
|
365 |
+
aF-3.4685254837670296
|
366 |
+
aF-9.250554181589486
|
367 |
+
aF-8.071899185247839
|
368 |
+
aF-9.432875738383439
|
369 |
+
aF-3.424799925470261
|
370 |
+
aF-9.432875738383439
|
371 |
+
aF-1.8968318511898539
|
372 |
+
aa(lp17
|
373 |
+
F-3.41157713428474
|
374 |
+
aF-6.728285208389976
|
375 |
+
aF-3.0909427430720093
|
376 |
+
aF-1.740264825689735
|
377 |
+
aF-2.5015190512398306
|
378 |
+
aF-4.817371901371758
|
379 |
+
aF-2.113210530516431
|
380 |
+
aF-6.807749379744223
|
381 |
+
aF-3.295792549094097
|
382 |
+
aF-6.252798951069294
|
383 |
+
aF-4.917797884336954
|
384 |
+
aF-4.632769841879079
|
385 |
+
aF-5.98877585293416
|
386 |
+
aF-4.66665175664129
|
387 |
+
aF-2.876759518067293
|
388 |
+
aF-7.603753945743875
|
389 |
+
aF-6.864465609186075
|
390 |
+
aF-7.187239001449126
|
391 |
+
aF-3.052336215755031
|
392 |
+
aF-2.2647479268985964
|
393 |
+
aF-4.9001580949910455
|
394 |
+
aF-5.348959516586179
|
395 |
+
aF-7.14773655847288
|
396 |
+
aF-7.454376544669275
|
397 |
+
aF-4.546351845156791
|
398 |
+
aF-8.807726750069811
|
399 |
+
aF-1.4656789800236865
|
400 |
+
aa(lp18
|
401 |
+
F-5.082241389138844
|
402 |
+
aF-5.142393631993602
|
403 |
+
aF-4.276598353328924
|
404 |
+
aF-4.085216817689867
|
405 |
+
aF-5.759968385010914
|
406 |
+
aF-2.174773615995364
|
407 |
+
aF-5.288621572218711
|
408 |
+
aF-6.090174110360315
|
409 |
+
aF-4.4715723308194235
|
410 |
+
aF-6.90687468303798
|
411 |
+
aF-4.432658655412265
|
412 |
+
aF-3.2277431063139637
|
413 |
+
aF-2.8212923556513845
|
414 |
+
aF-1.7681088393713913
|
415 |
+
aF-3.5156224239092224
|
416 |
+
aF-3.9518016568316168
|
417 |
+
aF-8.986316224717816
|
418 |
+
aF-2.1664590794141954
|
419 |
+
aF-3.3712131841519417
|
420 |
+
aF-3.1224483347145418
|
421 |
+
aF-2.2101893882141153
|
422 |
+
aF-3.5450716407123704
|
423 |
+
aF-3.1404797504673136
|
424 |
+
aF-6.663111844521034
|
425 |
+
aF-5.51344438505264
|
426 |
+
aF-7.704225641127928
|
427 |
+
aF-2.2129736790077486
|
428 |
+
aa(lp19
|
429 |
+
F-2.136265349667144
|
430 |
+
aF-7.648749930275526
|
431 |
+
aF-6.522163789565011
|
432 |
+
aF-8.503165258431594
|
433 |
+
aF-1.734614577170007
|
434 |
+
aF-6.50168525822147
|
435 |
+
aF-7.785325465281278
|
436 |
+
aF-3.642577960578998
|
437 |
+
aF-2.654272848600284
|
438 |
+
aF-8.454375094262163
|
439 |
+
aF-7.861311372259199
|
440 |
+
aF-2.3851781986138283
|
441 |
+
aF-6.363099094935324
|
442 |
+
aF-7.294204912594619
|
443 |
+
aF-2.116201767527298
|
444 |
+
aF-2.7907534570773387
|
445 |
+
aF-9.196312438991539
|
446 |
+
aF-1.7868731941606955
|
447 |
+
aF-3.8487288311405847
|
448 |
+
aF-3.2942257030347744
|
449 |
+
aF-3.1971277688684197
|
450 |
+
aF-9.196312438991539
|
451 |
+
aF-7.0800569241889875
|
452 |
+
aF-9.196312438991539
|
453 |
+
aF-4.987152202340858
|
454 |
+
aF-9.196312438991539
|
455 |
+
aF-2.9363486388485507
|
456 |
+
aa(lp20
|
457 |
+
F-6.182291496945648
|
458 |
+
aF-6.182291496945648
|
459 |
+
aF-6.182291496945648
|
460 |
+
aF-6.182291496945648
|
461 |
+
aF-6.182291496945648
|
462 |
+
aF-6.182291496945648
|
463 |
+
aF-6.182291496945648
|
464 |
+
aF-6.182291496945648
|
465 |
+
aF-6.182291496945648
|
466 |
+
aF-6.182291496945648
|
467 |
+
aF-6.182291496945648
|
468 |
+
aF-6.182291496945648
|
469 |
+
aF-6.182291496945648
|
470 |
+
aF-6.182291496945648
|
471 |
+
aF-6.182291496945648
|
472 |
+
aF-6.182291496945648
|
473 |
+
aF-6.182291496945648
|
474 |
+
aF-6.182291496945648
|
475 |
+
aF-6.182291496945648
|
476 |
+
aF-6.182291496945648
|
477 |
+
aF-0.057170565024993084
|
478 |
+
aF-6.182291496945648
|
479 |
+
aF-6.182291496945648
|
480 |
+
aF-6.182291496945648
|
481 |
+
aF-6.182291496945648
|
482 |
+
aF-6.182291496945648
|
483 |
+
aF-5.540437610773254
|
484 |
+
aa(lp21
|
485 |
+
F-2.5722807952437394
|
486 |
+
aF-5.99205725679638
|
487 |
+
aF-4.319316764551239
|
488 |
+
aF-3.7284294070555273
|
489 |
+
aF-1.4225483817556492
|
490 |
+
aF-5.357231686671419
|
491 |
+
aF-4.331760927128789
|
492 |
+
aF-6.033757985995324
|
493 |
+
aF-2.364541745819138
|
494 |
+
aF-9.405183209323809
|
495 |
+
aF-4.850464566831816
|
496 |
+
aF-4.673556599383159
|
497 |
+
aF-3.74500437214974
|
498 |
+
aF-3.916576116332641
|
499 |
+
aF-2.322164557359624
|
500 |
+
aF-5.413979406021222
|
501 |
+
aF-9.0405400957359
|
502 |
+
aF-3.636862213530037
|
503 |
+
aF-2.9016138569514562
|
504 |
+
aF-3.2345687965875074
|
505 |
+
aF-3.9816438780223904
|
506 |
+
aF-4.905818082232694
|
507 |
+
aF-6.257588586460572
|
508 |
+
aF-10.13915238440401
|
509 |
+
aF-3.2585970253485272
|
510 |
+
aF-8.070182142591468
|
511 |
+
aF-1.7281348556024396
|
512 |
+
aa(lp22
|
513 |
+
F-3.2090119684802527
|
514 |
+
aF-6.334899523154303
|
515 |
+
aF-4.093299064417374
|
516 |
+
aF-7.59203503906228
|
517 |
+
aF-2.1586345703035548
|
518 |
+
aF-6.182995193953419
|
519 |
+
aF-7.849503332917564
|
520 |
+
aF-2.915257814589145
|
521 |
+
aF-2.7754710419906368
|
522 |
+
aF-9.550291023939893
|
523 |
+
aF-4.551024457450397
|
524 |
+
aF-4.707131510786311
|
525 |
+
aF-4.589272322367449
|
526 |
+
aF-6.243245073400844
|
527 |
+
aF-2.968928515714967
|
528 |
+
aF-3.853927304671137
|
529 |
+
aF-7.00903143760076
|
530 |
+
aF-8.243133983378726
|
531 |
+
aF-2.8108514947509753
|
532 |
+
aF-2.1177557637833035
|
533 |
+
aF-3.256550330868065
|
534 |
+
aF-7.865503674264006
|
535 |
+
aF-5.380597024476005
|
536 |
+
aF-10.383200146874996
|
537 |
+
aF-5.201416596582911
|
538 |
+
aF-9.913196517629261
|
539 |
+
aF-0.9911300598753203
|
540 |
+
aa(lp23
|
541 |
+
F-3.1682706209020797
|
542 |
+
aF-8.217706195099385
|
543 |
+
aF-5.878899838671022
|
544 |
+
aF-9.525219678366163
|
545 |
+
aF-2.3388918749787213
|
546 |
+
aF-7.172402459885784
|
547 |
+
aF-8.478432457562638
|
548 |
+
aF-1.1074718716074006
|
549 |
+
aF-2.3662341497302157
|
550 |
+
aF-10.456777882371107
|
551 |
+
aF-9.689522729657439
|
552 |
+
aF-4.418539855249544
|
553 |
+
aF-6.032391973858083
|
554 |
+
aF-7.21960886445558
|
555 |
+
aF-2.3367153961191565
|
556 |
+
aF-8.16191483547097
|
557 |
+
aF-10.719142146838596
|
558 |
+
aF-3.4624215669877803
|
559 |
+
aF-3.6797447588047447
|
560 |
+
aF-4.0251990917417855
|
561 |
+
aF-3.9002180815630756
|
562 |
+
aF-9.555991337032916
|
563 |
+
aF-5.18259559155831
|
564 |
+
aF-10.131355481936478
|
565 |
+
aF-4.204725796166784
|
566 |
+
aF-7.984774637419013
|
567 |
+
aF-1.5835253210583506
|
568 |
+
aa(lp24
|
569 |
+
F-3.6907063474960813
|
570 |
+
aF-3.7341336409281
|
571 |
+
aF-3.2454721262149633
|
572 |
+
aF-4.020608712629845
|
573 |
+
aF-3.281297978688059
|
574 |
+
aF-5.0172437658127595
|
575 |
+
aF-3.1933271849501734
|
576 |
+
aF-7.7963898885987
|
577 |
+
aF-3.73111886626001
|
578 |
+
aF-9.35453450664525
|
579 |
+
aF-6.208229374611885
|
580 |
+
aF-2.257675168572427
|
581 |
+
aF-3.4112977818505237
|
582 |
+
aF-2.089862646254399
|
583 |
+
aF-6.096437968623768
|
584 |
+
aF-3.100705695069777
|
585 |
+
aF-8.949069398537086
|
586 |
+
aF-1.905375903432984
|
587 |
+
aF-1.9722545836234537
|
588 |
+
aF-1.9648676140617645
|
589 |
+
aF-9.274491798971713
|
590 |
+
aF-6.7831953510849425
|
591 |
+
aF-9.35453450664525
|
592 |
+
aF-7.31765257938421
|
593 |
+
aF-7.3735330377786665
|
594 |
+
aF-5.267158613739243
|
595 |
+
aF-3.2700350935700784
|
596 |
+
aa(lp25
|
597 |
+
F-2.4677551327310105
|
598 |
+
aF-8.46601472297182
|
599 |
+
aF-8.561324902776146
|
600 |
+
aF-7.868177722216201
|
601 |
+
aF-0.5192363285514866
|
602 |
+
aF-8.561324902776146
|
603 |
+
aF-8.298960638308655
|
604 |
+
aF-8.46601472297182
|
605 |
+
aF-1.7429474349452256
|
606 |
+
aF-8.46601472297182
|
607 |
+
aF-7.919471016603751
|
608 |
+
aF-5.443374996497906
|
609 |
+
aF-8.561324902776146
|
610 |
+
aF-4.566800675836256
|
611 |
+
aF-2.7892609207035393
|
612 |
+
aF-8.561324902776146
|
613 |
+
aF-8.561324902776146
|
614 |
+
aF-6.268790145635601
|
615 |
+
aF-4.407140340198028
|
616 |
+
aF-7.973538237874027
|
617 |
+
aF-6.289199017266808
|
618 |
+
aF-8.379003345982191
|
619 |
+
aF-8.030696651713976
|
620 |
+
aF-8.46601472297182
|
621 |
+
aF-5.258107929474194
|
622 |
+
aF-8.561324902776146
|
623 |
+
aF-3.1228109057348257
|
624 |
+
aa(lp26
|
625 |
+
F-1.596798460957614
|
626 |
+
aF-7.6001421705956735
|
627 |
+
aF-7.640964165115928
|
628 |
+
aF-5.344648685135478
|
629 |
+
aF-1.8921021056868312
|
630 |
+
aF-6.839336341561913
|
631 |
+
aF-8.110967794361665
|
632 |
+
aF-1.6228272590921338
|
633 |
+
aF-1.7628783045649916
|
634 |
+
aF-8.87310784640856
|
635 |
+
aF-7.001305669506969
|
636 |
+
aF-5.467159861987808
|
637 |
+
aF-8.179960665848615
|
638 |
+
aF-3.2183655671770013
|
639 |
+
aF-2.524218636471301
|
640 |
+
aF-8.293289351155618
|
641 |
+
aF-9.209580083029774
|
642 |
+
aF-4.57000847032435
|
643 |
+
aF-4.2425484264156506
|
644 |
+
aF-5.65423202154036
|
645 |
+
aF-7.560921457442392
|
646 |
+
aF-9.209580083029774
|
647 |
+
aF-7.307472556632853
|
648 |
+
aF-9.209580083029774
|
649 |
+
aF-6.877436187794184
|
650 |
+
aF-9.02725852623582
|
651 |
+
aF-2.172728230713227
|
652 |
+
aa(lp27
|
653 |
+
F-2.254780968033424
|
654 |
+
aF-6.898209866138606
|
655 |
+
aF-2.027603216646053
|
656 |
+
aF-6.492744758030441
|
657 |
+
aF-2.462642464536694
|
658 |
+
aF-5.833499129146177
|
659 |
+
aF-6.898209866138606
|
660 |
+
aF-4.310445830910898
|
661 |
+
aF-2.0731012597852527
|
662 |
+
aF-6.898209866138606
|
663 |
+
aF-6.898209866138606
|
664 |
+
aF-6.42820623689287
|
665 |
+
aF-6.715888309344651
|
666 |
+
aF-6.898209866138606
|
667 |
+
aF-4.4558628307694015
|
668 |
+
aF-1.4955324842663262
|
669 |
+
aF-6.3675816150764355
|
670 |
+
aF-4.636446767664815
|
671 |
+
aF-5.766807754647505
|
672 |
+
aF-1.8703897472882491
|
673 |
+
aF-4.37248122183035
|
674 |
+
aF-4.348764695213034
|
675 |
+
aF-6.802899686334281
|
676 |
+
aF-4.473407140420311
|
677 |
+
aF-5.175443268397502
|
678 |
+
aF-6.898209866138606
|
679 |
+
aF-2.5557039896270073
|
680 |
+
aa(lp28
|
681 |
+
F-3.872874353532438
|
682 |
+
aF-6.07983833755968
|
683 |
+
aF-5.605956228985375
|
684 |
+
aF-6.1495716755743555
|
685 |
+
aF-2.9181087352006836
|
686 |
+
aF-5.833140189836589
|
687 |
+
aF-6.998723104610883
|
688 |
+
aF-7.317176835729417
|
689 |
+
aF-3.8266394412494407
|
690 |
+
aF-8.857621876676566
|
691 |
+
aF-7.45070822835394
|
692 |
+
aF-4.745382824577915
|
693 |
+
aF-4.447858487031085
|
694 |
+
aF-5.448125692199715
|
695 |
+
aF-2.2255103117197566
|
696 |
+
aF-4.737230605516364
|
697 |
+
aF-9.03994343347052
|
698 |
+
aF-5.751541545953709
|
699 |
+
aF-3.132676045163294
|
700 |
+
aF-4.230201081753655
|
701 |
+
aF-7.038463433260397
|
702 |
+
aF-7.65364907235063
|
703 |
+
aF-6.230540738108023
|
704 |
+
aF-7.70494236673818
|
705 |
+
aF-8.16447469611662
|
706 |
+
aF-7.731610613820342
|
707 |
+
aF-0.3817890191036424
|
708 |
+
aa(lp29
|
709 |
+
F-2.531179599331457
|
710 |
+
aF-6.00314605188182
|
711 |
+
aF-5.907835872077495
|
712 |
+
aF-4.694813232231641
|
713 |
+
aF-0.9292230185496455
|
714 |
+
aF-5.907835872077495
|
715 |
+
aF-6.00314605188182
|
716 |
+
aF-3.199785670975285
|
717 |
+
aF-2.3395844057521735
|
718 |
+
aF-6.00314605188182
|
719 |
+
aF-5.666673815260607
|
720 |
+
aF-3.886890537079268
|
721 |
+
aF-4.0016660516716955
|
722 |
+
aF-5.009894278871537
|
723 |
+
aF-1.7362497244615696
|
724 |
+
aF-6.00314605188182
|
725 |
+
aF-6.00314605188182
|
726 |
+
aF-6.00314605188182
|
727 |
+
aF-5.820824495087865
|
728 |
+
aF-5.907835872077495
|
729 |
+
aF-3.1183453390351104
|
730 |
+
aF-5.666673815260607
|
731 |
+
aF-5.907835872077495
|
732 |
+
aF-6.00314605188182
|
733 |
+
aF-4.568061526592497
|
734 |
+
aF-3.7731316517226094
|
735 |
+
aF-3.1699327078256037
|
736 |
+
aa(lp30
|
737 |
+
F-2.154456318300654
|
738 |
+
aF-3.132028909232904
|
739 |
+
aF-3.204240273221435
|
740 |
+
aF-3.554775966080049
|
741 |
+
aF-3.8320798875631166
|
742 |
+
aF-3.2625149066892174
|
743 |
+
aF-4.1318426237305275
|
744 |
+
aF-2.7847122791384975
|
745 |
+
aF-2.7534204117779435
|
746 |
+
aF-5.68607428491371
|
747 |
+
aF-5.271518205104294
|
748 |
+
aF-3.779792629468334
|
749 |
+
aF-3.352468498262208
|
750 |
+
aF-3.8123859357235683
|
751 |
+
aF-2.644532475328425
|
752 |
+
aF-3.3676057306367433
|
753 |
+
aF-6.237872536056438
|
754 |
+
aF-3.6809218434868227
|
755 |
+
aF-2.7030074975159986
|
756 |
+
aF-1.86142386740762
|
757 |
+
aF-4.4723885304095425
|
758 |
+
aF-4.918696830481552
|
759 |
+
aF-2.8042850405884527
|
760 |
+
aF-7.783949528282384
|
761 |
+
aF-4.702039558487341
|
762 |
+
aF-8.486442571260568
|
763 |
+
aF-3.2910629924454486
|
764 |
+
aas.
|
good.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rob
|
2 |
+
two models
|
3 |
+
some long sentence, might suck?
|
4 |
+
Project Gutenberg
|
5 |
+
a b c
|
6 |
+
|