Spaces:
Runtime error
Runtime error
Create aitask.py
Browse files
aitask.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from confluent_kafka import KafkaException, Producer
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
from transformers import TextStreamer, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
+
from confluent_kafka.serialization import (
|
8 |
+
MessageField,
|
9 |
+
SerializationContext,
|
10 |
+
)
|
11 |
+
from unsloth import FastLanguageModel
|
12 |
+
from uuid import uuid4
|
13 |
+
import concurrent.futures
|
14 |
+
|
15 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
|
16 |
+
hf_token = os.getenv("HF_TOKEN")
|
17 |
+
|
18 |
+
class MessageSend:
|
19 |
+
def __init__(self, username, title, level, detail=None):
|
20 |
+
self.username = username
|
21 |
+
self.title = title
|
22 |
+
self.level = level
|
23 |
+
self.detail = detail
|
24 |
+
|
25 |
+
def cover_message(msg):
|
26 |
+
"""Return a dictionary representation of a User instance for serialization."""
|
27 |
+
return dict(
|
28 |
+
username=msg.username,
|
29 |
+
title=msg.title,
|
30 |
+
level=msg.level,
|
31 |
+
detail=msg.detail
|
32 |
+
)
|
33 |
+
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
logging.basicConfig(level=logging.INFO)
|
36 |
+
|
37 |
+
class TooManyRequestsError(Exception):
|
38 |
+
def __init__(self, retry_after):
|
39 |
+
self.retry_after = retry_after
|
40 |
+
|
41 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
42 |
+
model_name = "admincybers2/sentinal",
|
43 |
+
max_seq_length = 4096,
|
44 |
+
dtype = None,
|
45 |
+
load_in_4bit = True,
|
46 |
+
token=hf_token
|
47 |
+
)
|
48 |
+
|
49 |
+
# Enable native 2x faster inference
|
50 |
+
FastLanguageModel.for_inference(model)
|
51 |
+
vulnerable_prompt = "Identify the line of code that is vulnerable and describe the type of software vulnerability, no yapping if no vulnerable code found pls return 'no vulnerable'\n### Code Snippet:\n{}\n### Vulnerability Description:\n{}"
|
52 |
+
|
53 |
+
|
54 |
+
def extract_data(full_message):
|
55 |
+
try:
|
56 |
+
message = json.loads(full_message)
|
57 |
+
return message
|
58 |
+
except json.JSONDecodeError as e:
|
59 |
+
logger.error(f"Failed to extract data: {e}")
|
60 |
+
return None
|
61 |
+
|
62 |
+
def perform_ai_task(question):
|
63 |
+
prompt = vulnerable_prompt.format(question, "")
|
64 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
65 |
+
text_streamer = TextStreamer(tokenizer)
|
66 |
+
|
67 |
+
try:
|
68 |
+
model_output = model.generate(
|
69 |
+
**inputs,
|
70 |
+
streamer=text_streamer,
|
71 |
+
use_cache=True,
|
72 |
+
max_new_tokens=640,
|
73 |
+
temperature=0.5,
|
74 |
+
top_k=50,
|
75 |
+
top_p=0.9,
|
76 |
+
min_p=0.01,
|
77 |
+
typical_p=0.95,
|
78 |
+
repetition_penalty=1.2,
|
79 |
+
no_repeat_ngram_size=3,
|
80 |
+
)
|
81 |
+
generated_text = tokenizer.decode(model_output[0], skip_special_tokens=True)
|
82 |
+
except RuntimeError as e:
|
83 |
+
error_message = str(e)
|
84 |
+
if "probability tensor contains either `inf`, `nan` or element < 0" in error_message:
|
85 |
+
logger.error("Encountered probability tensor error, skipping this task.")
|
86 |
+
return None
|
87 |
+
else:
|
88 |
+
logger.error(f"Runtime error during model generation: {error_message}. Switching to remote inference.")
|
89 |
+
|
90 |
+
deduplicated_text = deduplicate_text(generated_text)
|
91 |
+
return {
|
92 |
+
"detail": deduplicated_text
|
93 |
+
}
|
94 |
+
|
95 |
+
def deduplicate_text(text):
|
96 |
+
sentences = text.split('. ')
|
97 |
+
seen_sentences = set()
|
98 |
+
deduplicated_sentences = []
|
99 |
+
|
100 |
+
for sentence in sentences:
|
101 |
+
if sentence not in seen_sentences:
|
102 |
+
seen_sentences.add(sentence)
|
103 |
+
deduplicated_sentences.append(sentence)
|
104 |
+
|
105 |
+
return '. '.join(deduplicated_sentences) + '.'
|
106 |
+
|
107 |
+
def delivery_report(err, msg):
|
108 |
+
if err is not None:
|
109 |
+
logger.error(f"Message delivery failed: {err}")
|
110 |
+
else:
|
111 |
+
logger.info(f"Message delivered to {msg.topic()} [{msg.partition()}]")
|
112 |
+
|
113 |
+
def handle_message(msg, producer, ensure_producer_connected, avro_serializer):
|
114 |
+
logger.info(f'Message value {msg}')
|
115 |
+
if msg:
|
116 |
+
ensure_producer_connected(producer)
|
117 |
+
try:
|
118 |
+
ai_results = perform_ai_task(msg['message_send'])
|
119 |
+
if ai_results is None:
|
120 |
+
logger.error("AI task skipped due to an error in model generation.")
|
121 |
+
return
|
122 |
+
|
123 |
+
detail = ai_results.get("detail", "No details available")
|
124 |
+
|
125 |
+
topic = "get_scan_message"
|
126 |
+
|
127 |
+
messagedict = cover_message(
|
128 |
+
MessageSend(
|
129 |
+
username=msg['username'],
|
130 |
+
title=msg['path'],
|
131 |
+
level='',
|
132 |
+
detail=detail
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
if messagedict:
|
137 |
+
byte_value = avro_serializer(messagedict, SerializationContext(topic, MessageField.VALUE))
|
138 |
+
producer.produce(
|
139 |
+
topic,
|
140 |
+
value=byte_value,
|
141 |
+
headers={"correlation_id": str(uuid4())},
|
142 |
+
callback=delivery_report
|
143 |
+
)
|
144 |
+
producer.flush()
|
145 |
+
else:
|
146 |
+
logger.error("Message serialization failed; skipping production.")
|
147 |
+
except KafkaException as e:
|
148 |
+
logger.error(f"Kafka error producing message: {e}")
|
149 |
+
except Exception as e:
|
150 |
+
logger.error(f"Unhandled error in handle_message: {e}")
|