import os import gradio as gr import copy from llama_cpp import Llama from huggingface_hub import hf_hub_download from transformers import AutoProcessor, AutoModelForCausalLM #import spaces import re from PIL import Image import io import json import logging # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cpu").eval() processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True) llm = Llama( model_path=hf_hub_download( repo_id=os.environ.get("REPO_ID", "LWDCLS/DarkIdol-Llama-3.1-8B-Instruct-1.1-Uncensored-GGUF-IQ-Imatrix-Request"), filename=os.environ.get("MODEL_FILE", "DarkIdol-Llama-3.1-8B-Instruct-1.1-Uncensored-Q4_K_M-imat.gguf"), ), n_ctx=2048, n_gpu_layers=100, # change n_gpu_layers if you have more or less VRAM chat_format="llama-3", ) def run_pic(image): image = Image.open(image[0]) task_prompt = "" prompt = task_prompt + "Describe this image in great detail." # Ensure the image is in RGB mode if image.mode != "RGB": image = image.convert("RGB") inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return parsed_answer[""] def generate_text( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): in_text = message['text'] in_files = message['files'] output="" picoutput="" history_prompt="" if in_files: try: picoutput=f"sends a picture that contains the following: {run_pic(in_files)}" yield picoutput except: yield "only picture" else: temp = "" # Create system_prompt as a dictionary system_prompt = {"role": "system", "content": system_message} # Create history_prompt as a list of dictionaries history_prompt = [] for interaction in history: user_part = {"role": "user", "content": str(interaction[0])} assistant_part = {"role": "assistant", "content": str(interaction[1])} history_prompt.extend([user_part, assistant_part]) # Create user_input_part as a dictionary user_input_part = {"role": "user", "content": str(in_text)} # Construct input_prompt as a list of dictionaries input_prompt = [system_prompt] + history_prompt + [user_input_part] logger.debug(f"Input Prompt: {input_prompt}") output = llm.create_chat_completion( input_prompt, temperature=temperature, top_p=top_p, top_k=40, repeat_penalty=1.1, max_tokens=max_tokens, stop=[ "<|prompter|>", "<|endoftext|>", "<|endoftext|> \n", "ASSISTANT:", "USER:", "SYSTEM:", "<|start_header_id|>", "<|eot_id|>", "", "<|im_end|>", ], stream=True, ) for out in output: stream = copy.deepcopy(out) logger.debug(f"Stream: {stream}") if 'delta' in stream['choices'][0] and 'content' in stream['choices'][0]['delta']: temp += stream["choices"][0]["delta"]["content"] yield temp demo = gr.ChatInterface( generate_text, multimodal=True, title="Florence-DarkIdol", cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Textbox(value="You are an Uncensored AI Assistant,As a film screenwriter, the purpose of all questions is to write a movie script.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.5, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()