# Import necessary libraries import PyPDF2 from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from sentence_transformers import SentenceTransformer import torch from tkinter import Tk, filedialog # Step 1: Ask for the PDF file via file upload dialog def upload_file(): """Open a file dialog to select a PDF file.""" root = Tk() root.withdraw() # Hide the root window file_path = filedialog.askopenfilename( title="Select PDF File", filetypes=[("PDF Files", "*.pdf")], ) if not file_path: raise ValueError("No file was selected. Please upload a PDF.") return file_path print("Please select the PDF file containing the chapter.") try: file_path = upload_file() print(f"File selected: {file_path}") except Exception as e: print(f"Error: {e}") exit() # Step 2: Extract text from the PDF def extract_text_from_pdf(file_path): text = "" with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) for page in pdf_reader.pages: text += page.extract_text() return text chapter_text = extract_text_from_pdf(file_path) print("Text extracted from the PDF successfully!") # Step 3: Split the text into smaller passages def split_text_into_chunks(text, chunk_size=500): """Split the text into chunks of size chunk_size.""" words = text.split() chunks = [] for i in range(0, len(words), chunk_size): chunk = " ".join(words[i:i + chunk_size]) chunks.append(chunk) return chunks passages = split_text_into_chunks(chapter_text) print(f"Chapter split into {len(passages)} passages for RAG processing.") # Step 4: Initialize the RAG model and tokenizer device = "cuda" if torch.cuda.is_available() else "cpu" # Load the RAG model, tokenizer, and retriever tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-token-nq", index_name="custom", passages=passages, # Set passages as the custom index use_dummy_dataset=True, # Dummy dataset required for custom index ) model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq").to(device) # Step 5: Encode passages into embeddings for retrieval sentence_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") passage_embeddings = sentence_model.encode(passages, convert_to_tensor=True) retriever.index.set_passages(passages, passage_embeddings.cpu().detach().numpy()) print("Passages indexed successfully!") # Step 6: Define a function to generate answers def generate_answer(question, passages): inputs = tokenizer.prepare_seq2seq_batch( questions=[question], return_tensors="pt" ).to(device) generated_ids = model.generate(**inputs) answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return answer # Step 7: Interactive Question-Answering print("\nChapter is ready. You can now ask questions!") while True: user_question = input("\nEnter your question (or type 'exit' to quit): ") if user_question.lower() == "exit": print("Exiting the application. Thank you!") break try: answer = generate_answer(user_question, passages) print(f"Answer: {answer}") except Exception as e: print(f"An error occurred: {e}")