adorkin's picture
Update app.py
f7c349b
raw
history blame
1.41 kB
from transformers import pipeline
import gradio as gr
classifier = pipeline("zero-shot-classification", model="DeepPavlov/xlm-roberta-large-en-ru-mnli")
def wrap_classifier(text, labels, template):
labels = labels.split(",")
outputs = classifier(text, labels, hypothesis_template=template)
return outputs["labels"][0]
gr.Interface(
fn=wrap_classifier,
title="Zero-shot Classification",
inputs=[
gr.inputs.Textbox(
lines=3,
label="Text to classify",
default="Sneaky Credit Card Tactics Keep an eye on your credit card issuers -- they may be about to raise your rates."
),
gr.inputs.Textbox(
lines=1,
label="Candidate labels separated with commas (no spaces)",
default="World,Sports,Business,Sci/Tech",
placeholder="World,Sports,Business,Sci/Tech",
),
gr.inputs.Textbox(lines=1, label="Template", default="The topic of this text is {}.", placeholder="The topic of this text is {}.")
],
outputs=[
gr.outputs.Textbox(label="Predicted label")
],
enable_queue=True,
allow_screenshot=False,
allow_flagging=False,
# examples=[
# ["Indian state rolls out wireless broadband Government in South Indian state of Kerala sets up wireless kiosks as part of initiative to bridge digital divide."]
# ]
).launch(debug=True)