from transformers import pipeline import gradio as gr classifier = pipeline("zero-shot-classification", model="DeepPavlov/xlm-roberta-large-en-ru-mnli") def wrap_classifier(text, labels, template): labels = labels.split(",") outputs = classifier(text, labels, hypothesis_template=template) return outputs["labels"][0] gr.Interface( fn=wrap_classifier, title="Zero-shot Classification", inputs=[ gr.inputs.Textbox( lines=3, label="Text to classify", default="Sneaky Credit Card Tactics Keep an eye on your credit card issuers -- they may be about to raise your rates." ), gr.inputs.Textbox( lines=1, label="Candidate labels separated with commas (no spaces)", default="World,Sports,Business,Sci/Tech", placeholder="World,Sports,Business,Sci/Tech", ), gr.inputs.Textbox(lines=1, label="Template", default="The topic of this text is {}.", placeholder="The topic of this text is {}.") ], outputs=[ gr.outputs.Textbox(label="Predicted label") ], enable_queue=True, allow_screenshot=False, allow_flagging=False, # examples=[ # ["Indian state rolls out wireless broadband Government in South Indian state of Kerala sets up wireless kiosks as part of initiative to bridge digital divide."] # ] ).launch(debug=True)