File size: 1,674 Bytes
2606dde 5da61b4 0c4cf03 ad02fa3 0c4cf03 2606dde 0c4cf03 f209301 3c650ed ad02fa3 f209301 ad02fa3 2606dde 3c650ed 0c4cf03 f209301 0c4cf03 b7b2c8c 0c4cf03 b7b2c8c 0c4cf03 ad02fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import type { BackendModel } from "./server/models";
import type { Message } from "./types/Message";
import { collections } from "$lib/server/database";
import { ObjectId } from "mongodb";
/**
* Convert [{user: "assistant", content: "hi"}, {user: "user", content: "hello"}] to:
*
* <|assistant|>hi<|endoftext|><|prompter|>hello<|endoftext|><|assistant|>
*/
export async function buildPrompt(
messages: Pick<Message, "from" | "content">[],
model: BackendModel,
webSearchId?: string
): Promise<string> {
const userEndToken = model.userMessageEndToken ?? model.messageEndToken;
const assistantEndToken = model.assistantMessageEndToken ?? model.messageEndToken;
const prompt =
messages
.map((m) =>
m.from === "user"
? model.userMessageToken +
m.content +
(m.content.endsWith(userEndToken) ? "" : userEndToken)
: model.assistantMessageToken +
m.content +
(m.content.endsWith(assistantEndToken) ? "" : assistantEndToken)
)
.join("") + model.assistantMessageToken;
let webPrompt = "";
if (webSearchId) {
const webSearch = await collections.webSearches.findOne({
_id: new ObjectId(webSearchId),
});
if (!webSearch) throw new Error("Web search not found");
if (webSearch.summary) {
webPrompt =
model.assistantMessageToken +
`The following context was found while searching the internet: ${webSearch.summary}` +
model.assistantMessageEndToken;
}
}
const finalPrompt =
model.preprompt +
webPrompt +
prompt
.split(" ")
.slice(-(model.parameters?.truncate ?? 0))
.join(" ");
// Not super precise, but it's truncated in the model's backend anyway
return finalPrompt;
}
|