huggi / src /lib /server /models.ts
MichaelFried's picture
Add embedding models configurable, from both transformers.js and TEI (#646)
3a01622 unverified
raw
history blame
5.22 kB
import {
HF_TOKEN,
HF_API_ROOT,
MODELS,
OLD_MODELS,
TASK_MODEL,
HF_ACCESS_TOKEN,
} from "$env/static/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import endpointTgi from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";
import JSON5 from "json5";
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().min(1),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
datasetName: z.string().min(1).optional(),
datasetUrl: z.string().url().optional(),
userMessageToken: z.string().default(""),
userMessageEndToken: z.string().default(""),
assistantMessageToken: z.string().default(""),
assistantMessageEndToken: z.string().default(""),
messageEndToken: z.string().default(""),
preprompt: z.string().default(""),
prepromptUrl: z.string().url().optional(),
chatPromptTemplate: z
.string()
.default(
"{{preprompt}}" +
"{{#each messages}}" +
"{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}" +
"{{#ifAssistant}}{{@root.assistantMessageToken}}{{content}}{{@root.assistantMessageEndToken}}{{/ifAssistant}}" +
"{{/each}}" +
"{{assistantMessageToken}}"
),
promptExamples: z
.array(
z.object({
title: z.string().min(1),
prompt: z.string().min(1),
})
)
.optional(),
endpoints: z.array(endpointSchema).optional(),
parameters: z
.object({
temperature: z.number().min(0).max(1),
truncate: z.number().int().positive().optional(),
max_new_tokens: z.number().int().positive(),
stop: z.array(z.string()).optional(),
top_p: z.number().positive().optional(),
top_k: z.number().positive().optional(),
repetition_penalty: z.number().min(-2).max(2).optional(),
})
.passthrough()
.optional(),
multimodal: z.boolean().default(false),
unlisted: z.boolean().default(false),
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
});
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(MODELS));
const processModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
userMessageEndToken: m?.userMessageEndToken || m?.messageEndToken,
assistantMessageEndToken: m?.assistantMessageEndToken || m?.messageEndToken,
chatPromptRender: compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m),
id: m.id || m.name,
displayName: m.displayName || m.name,
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
...m,
getEndpoint: async (): Promise<Endpoint> => {
if (!m.endpoints) {
return endpointTgi({
type: "tgi",
url: `${HF_API_ROOT}/${m.name}`,
accessToken: HF_TOKEN ?? HF_ACCESS_TOKEN,
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tgi":
return endpoints.tgi(args);
case "aws":
return await endpoints.aws(args);
case "openai":
return await endpoints.openai(args);
case "llamacpp":
return endpoints.llamacpp(args);
case "ollama":
return endpoints.ollama(args);
default:
// for legacy reason
return endpoints.tgi(args);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select endpoint`);
},
});
export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint)));
export const defaultModel = models[0];
// Models that have been deprecated
export const oldModels = OLD_MODELS
? z
.array(
z.object({
id: z.string().optional(),
name: z.string().min(1),
displayName: z.string().min(1).optional(),
})
)
.parse(JSON5.parse(OLD_MODELS))
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
: [];
export const validateModel = (_models: BackendModel[]) => {
// Zod enum function requires 2 parameters
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};
// if `TASK_MODEL` is the name of a model we use it, else we try to parse `TASK_MODEL` as a model config itself
export const smallModel = TASK_MODEL
? (models.find((m) => m.name === TASK_MODEL) ||
(await processModel(modelConfig.parse(JSON5.parse(TASK_MODEL))).then((m) =>
addEndpoint(m)
))) ??
defaultModel
: defaultModel;
export type BackendModel = Optional<
typeof defaultModel,
"preprompt" | "parameters" | "multimodal" | "unlisted"
>;