File size: 10,875 Bytes
6a15265
c207609
cf5c7de
5fb4856
51fe19a
c207609
 
51fe19a
 
e169f05
c207609
e169f05
c207609
51fe19a
c207609
b85d14b
 
af96a70
b85d14b
 
c207609
51fe19a
cf5c7de
5fb4856
 
cf5c7de
 
51fe19a
 
 
 
 
 
 
 
 
 
 
 
 
b85d14b
3309ae3
c207609
51fe19a
 
c207609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62373e8
 
 
 
 
 
 
 
 
c207609
 
 
 
 
cf5c7de
b85d14b
c207609
 
 
 
3309ae3
 
 
 
 
c207609
 
b85d14b
 
 
c4c68ad
b85d14b
c207609
 
b7b16e5
c207609
cf5c7de
 
5fb4856
cf5c7de
5fb4856
c207609
e169f05
 
 
 
 
 
 
 
 
c207609
 
 
3309ae3
c207609
 
 
e169f05
 
 
 
 
 
 
 
 
3309ae3
e169f05
af96a70
cf5c7de
e169f05
 
 
 
0477f96
e169f05
 
 
 
 
 
 
 
 
 
 
 
c207609
62373e8
98f123b
62373e8
 
c207609
98f123b
 
e169f05
57063e2
cbe641c
 
45abd0a
 
 
b85d14b
cbe641c
 
57063e2
cbe641c
c207609
 
 
 
491b49d
a3c927c
 
 
 
 
 
491b49d
 
c207609
 
 
 
 
 
cf5c7de
 
5fb4856
 
 
 
 
 
 
 
 
 
 
 
cf5c7de
5fb4856
cf5c7de
5fb4856
cf5c7de
5fb4856
cf5c7de
 
 
5fb4856
cf5c7de
 
 
 
 
 
 
 
 
 
 
 
5fb4856
 
cf5c7de
 
baf910d
e169f05
 
 
 
 
 
b85d14b
 
 
 
3dbc61d
57063e2
 
 
 
 
3dbc61d
 
3309ae3
 
c207609
 
 
e169f05
c207609
 
57063e2
cf5c7de
5fb4856
a3c927c
c207609
 
 
3309ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb4856
3309ae3
6533564
3309ae3
 
 
 
 
 
 
 
 
 
 
 
 
c207609
 
cf5c7de
5fb4856
c207609
 
 
 
 
 
cf5c7de
b85d14b
c207609
 
 
 
 
 
3309ae3
c207609
3309ae3
c207609
 
 
 
 
 
 
 
cf5c7de
b85d14b
c207609
 
 
 
 
 
3309ae3
c207609
3309ae3
c207609
 
 
 
 
cf5c7de
5fb4856
 
cf5c7de
 
 
 
 
 
 
 
 
 
 
 
5fb4856
cf5c7de
5fb4856
a3c927c
c207609
b85d14b
b96f7b5
c207609
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import datetime
import os
import random
import re
from io import StringIO

import gradio as gr
import pandas as pd
from huggingface_hub import upload_file
from text_generation import Client

HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
DIALOGUES_DATASET = "HuggingFaceH4/starchat_playground_dialogues"

model2endpoint = {
    "starchat-alpha": "https://api-inference.huggingface.co/models/HuggingFaceH4/starcoderbase-finetuned-oasst1",
    "starchat-beta": "https://api-inference.huggingface.co/models/HuggingFaceH4/starchat-beta",
}
model_names = list(model2endpoint.keys())


def randomize_seed_generator():
    seed = random.randint(0, 1000000)
    return seed


def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs, model):
    buffer = StringIO()
    timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
    file_name = f"prompts_{timestamp}.jsonl"
    data = {"model": model, "inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}
    pd.DataFrame([data]).to_json(buffer, orient="records", lines=True)

    # Push to Hub
    upload_file(
        path_in_repo=f"{now.date()}/{now.hour}/{file_name}",
        path_or_fileobj=buffer.getvalue().encode(),
        repo_id=DIALOGUES_DATASET,
        token=HF_TOKEN,
        repo_type="dataset",
    )

    # Clean and rerun
    buffer.close()


def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    return total_inputs


def wrap_html_code(text):
    pattern = r"<.*?>"
    matches = re.findall(pattern, text)
    if len(matches) > 0:
        return f"```{text}```"
    else:
        return text


def has_no_history(chatbot, history):
    return not chatbot and not history


def generate(
    RETRY_FLAG,
    model_name,
    system_message,
    user_message,
    chatbot,
    history,
    temperature,
    top_k,
    top_p,
    max_new_tokens,
    repetition_penalty,
    do_save=True,
):
    client = Client(
        model2endpoint[model_name],
        headers={"Authorization": f"Bearer {API_TOKEN}"},
        timeout=60,
    )
    # Don't return meaningless message when the input is empty
    if not user_message:
        print("Empty input")

    if not RETRY_FLAG:
        history.append(user_message)
        seed = 42
    else:
        seed = randomize_seed_generator()

    past_messages = []
    for data in chatbot:
        user_data, model_data = data

        past_messages.extend(
            [{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
        )


    generate_kwargs = {
        "temperature": temperature,
        "top_k": top_k,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        truncate=4096,
        seed=seed,
        stop_sequences=["<|end|>"],
    )

    stream = client.generate_stream(
        system_message,
        **generate_kwargs,
    )

    output = ""
    for idx, response in enumerate(stream):
        if response.token.special:
            continue
        output += response.token.text
        if idx == 0:
            history.append(" " + output)
        else:
            history[-1] = output

        chat = [
            (wrap_html_code(history[i].strip()), wrap_html_code(history[i + 1].strip()))
            for i in range(0, len(history) - 1, 2)
        ]

        # chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]

        yield chat, history, user_message, ""

    if HF_TOKEN and do_save:
        try:
            now = datetime.datetime.now()
            current_time = now.strftime("%Y-%m-%d %H:%M:%S")
            print(f"[{current_time}] Pushing prompt and completion to the Hub")
            save_inputs_and_outputs(now, prompt, output, generate_kwargs, model_name)
        except Exception as e:
            print(e)

    return chat, history, user_message, ""

def clear_chat():
    return [], []


def delete_last_turn(chat, history):
    if chat and history:
        chat.pop(-1)
        history.pop(-1)
        history.pop(-1)
    return chat, history


def process_example(args):
    for [x, y] in generate(args):
        pass
    return [x, y]


# Regenerate response
def retry_last_answer(
    selected_model,
    system_message,
    user_message,
    chat,
    history,
    temperature,
    top_k,
    top_p,
    max_new_tokens,
    repetition_penalty,
    do_save,
):
    if chat and history:
        # Removing the previous conversation from chat
        chat.pop(-1)
        # Removing bot response from the history
        history.pop(-1)
        # Setting up a flag to capture a retry
        RETRY_FLAG = True
        # Getting last message from user
        user_message = history[-1]

    yield from generate(
        RETRY_FLAG,
        selected_model,
        system_message,
        user_message,
        chat,
        history,
        temperature,
        top_k,
        top_p,
        max_new_tokens,
        repetition_penalty,
        do_save,
    )


with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        do_save = gr.Checkbox(
            value=True,
            label="Store data",
            info="You agree to the storage of your prompt and generated text for research and development purposes:",
        )

    with gr.Row():
        selected_model = gr.Radio(choices=model_names, value=model_names[1], label="Select a model")

    with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"):
        system_message = gr.Textbox(
            elem_id="system-message",
            placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
            show_label=False,
        )
    with gr.Row():
        with gr.Box():
            output = gr.Markdown()
            chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")

    with gr.Row():
        with gr.Column(scale=3):
            user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
            with gr.Row():
                send_button = gr.Button("Send", elem_id="send-btn", visible=True)

                regenerate_button = gr.Button("Regenerate", elem_id="retry-btn", visible=True)

                delete_turn_button = gr.Button("Delete last turn", elem_id="delete-btn", visible=True)

                clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)

            with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
                temperature = gr.Slider(
                    label="Temperature",
                    value=0.2,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                )
                top_k = gr.Slider(
                    label="Top-k",
                    value=50,
                    minimum=0.0,
                    maximum=100,
                    step=1,
                    interactive=True,
                    info="Sample from a shortlist of top-k tokens",
                )
                top_p = gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.95,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=512,
                    minimum=0,
                    maximum=32000,
                    step=4,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                repetition_penalty = gr.Slider(
                    label="Repetition Penalty",
                    value=1.2,
                    minimum=0.0,
                    maximum=10,
                    step=0.1,
                    interactive=True,
                    info="The parameter for repetition penalty. 1.0 means no penalty.",
                )

    history = gr.State([])
    RETRY_FLAG = gr.Checkbox(value=False, visible=False)

    # To clear out "message" input textbox and use this to regenerate message
    last_user_message = gr.State("")

    user_message.submit(
        generate,
        inputs=[
            RETRY_FLAG,
            selected_model,
            system_message,
            user_message,
            chatbot,
            history,
            temperature,
            top_k,
            top_p,
            max_new_tokens,
            repetition_penalty,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    send_button.click(
        generate,
        inputs=[
            RETRY_FLAG,
            selected_model,
            system_message,
            user_message,
            chatbot,
            history,
            temperature,
            top_k,
            top_p,
            max_new_tokens,
            repetition_penalty,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    regenerate_button.click(
        retry_last_answer,
        inputs=[
            selected_model,
            system_message,
            user_message,
            chatbot,
            history,
            temperature,
            top_k,
            top_p,
            max_new_tokens,
            repetition_penalty,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
    clear_chat_button.click(clear_chat, outputs=[chatbot, history])
    selected_model.change(clear_chat, outputs=[chatbot, history])
    
demo.queue(concurrency_count=16).launch(debug=True)