import json import openai import pandas as pd import streamlit as st st.set_page_config(layout="wide") st.header('Calories') openai.api_key = st.secrets["open_ai_key"] if 'gpt_response' not in st.session_state: st.session_state.gpt_response = None context = '''create a valid JSON array of objects for tracking the calorie and macronutrient content of specified food items in the following format: [{ "food_item_name": "the name of the food item that was inputted including quantity expressed as a string", "number_of_calories": "number of calories for the specified quantity of the food item expressed as an integer", "grams_of_protein": "number of grams of protein for the specified quantity of the food item expressed as an integer", "grams_of_fat": "number of grams of fat for the specified quantity of the food item expressed as an integer", "grams_of_carbs": "number of grams of carbohydrates for the specified quantity of the food item expressed as an integer" }]''' prompt = st.text_input('List food items:') st.write('Example: *1 cup broccoli, 500g boneless skinless chicken breast, 1 cup coffee*') def get_response(context, prompt): st.session_state.gpt_response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": context}, {"role": "user", "content": prompt} ], temperature=0.2, max_tokens=1000 ) st.button(label='Submit', on_click=get_response, kwargs=dict(context=context, prompt=prompt)) if st.session_state.gpt_response is not None: st.dataframe(pd.DataFrame(json.loads(st.session_state.gpt_response['choices'][0]['message']['content'])), hide_index=True) cost = st.session_state.gpt_response['usage']["prompt_tokens"]*(0.0015/1000) + st.session_state.gpt_response['usage']["completion_tokens"]*(0.002/1000) st.write(f'Cost for query was approx ${cost}')