Spaces:
Running
Running
import os | |
import argparse | |
import re | |
from dataclasses import dataclass, field | |
from typing import List | |
# Based on https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp | |
class GptParams: | |
seed: int = -1 | |
n_threads: int = min(4, os.cpu_count() or 1) | |
n_predict: int = 128 | |
n_parts: int = -1 | |
n_ctx: int = 512 | |
n_batch: int = 8 | |
n_keep: int = 0 | |
ignore_eos: bool = False | |
logit_bias: dict[int, float] = field(default_factory=dict) | |
top_k: int = 40 | |
top_p: float = 0.95 | |
tfs_z: float = 1.00 | |
typical_p: float = 1.00 | |
temp: float = 0.80 | |
repeat_penalty: float = 1.10 | |
repeat_last_n: int = 64 | |
frequency_penalty: float = 0.0 | |
presence_penalty: float = 0.0 | |
mirostat: int = 0 | |
mirostat_tau: float = 5.0 | |
mirostat_eta: float = 0.1 | |
model: str = "./models/llama-7B/ggml-model.bin" | |
prompt: str = "" | |
path_session: str = "" | |
input_prefix: str = " " | |
input_suffix: str = "" | |
antiprompt: List[str] = field(default_factory=list) | |
lora_adapter: str = "" | |
lora_base: str = "" | |
memory_f16: bool = True | |
random_prompt: bool = False | |
use_color: bool = False | |
interactive: bool = False | |
embedding: bool = False | |
interactive_start: bool = False | |
instruct: bool = False | |
penalize_nl: bool = True | |
perplexity: bool = False | |
use_mmap: bool = True | |
use_mlock: bool = False | |
mem_test: bool = False | |
verbose_prompt: bool = False | |
file: str = None | |
# If chat ended prematurely, append this to the conversation to fix it. | |
# Set to "\nUser:" etc. | |
# This is an alternative to input_prefix which always adds it, so it potentially duplicates "User:"" | |
fix_prefix: str = "" | |
input_echo: bool = True, | |
# Default instructions for Alpaca | |
# switch to "Human" and "Assistant" for Vicuna. | |
# TODO: TBD how they are gonna handle this upstream | |
instruct_inp_prefix: str="\n\n### Instruction:\n\n" | |
instruct_inp_suffix: str="\n\n### Response:\n\n" | |
def gpt_params_parse(argv = None): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("-s", "--seed", type=int, default=-1, help="RNG seed (use random seed for <= 0)",dest="seed") | |
parser.add_argument("-t", "--threads", type=int, default=min(4, os.cpu_count() or 1), help="number of threads to use during computation",dest="n_threads") | |
parser.add_argument("-n", "--n_predict", type=int, default=128, help="number of tokens to predict (-1 = infinity)",dest="n_predict") | |
parser.add_argument("--n_parts", type=int, default=-1, help="number of model parts", dest="n_parts") | |
parser.add_argument("-c", "--ctx_size", type=int, default=512, help="size of the prompt context",dest="n_ctx") | |
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size for prompt processing",dest="n_batch") | |
parser.add_argument("--keep", type=int, default=0, help="number of tokens to keep from the initial prompt",dest="n_keep") | |
parser.add_argument( | |
"-l", | |
"--logit-bias", | |
type=str, | |
action='append', | |
help="--logit-bias TOKEN_ID(+/-)BIAS", | |
dest="logit_bias_str" | |
) | |
parser.add_argument("--ignore-eos", action="store_true", help="ignore end of stream token and continue generating", dest="ignore_eos") | |
parser.add_argument("--top_k", type=int, default=40, help="top-k sampling",dest="top_k") | |
parser.add_argument("--top_p", type=float, default=0.95, help="top-p samplin",dest="top_p") | |
parser.add_argument("--tfs", type=float, default=1.0, help="tail free sampling, parameter z (1.0 = disabled)",dest="tfs_z") | |
parser.add_argument("--temp", type=float, default=0.80, help="temperature",dest="temp") | |
parser.add_argument("--repeat_penalty", type=float, default=1.10, help="penalize repeat sequence of tokens",dest="repeat_penalty") | |
parser.add_argument("--repeat_last_n", type=int, default=64, help="last n tokens to consider for penalize ",dest="repeat_last_n") | |
parser.add_argument("--frequency_penalty", type=float, default=0.0, help="repeat alpha frequency penalty (0.0 = disabled)",dest="tfs_z") | |
parser.add_argument("--presence_penalty", type=float, default=0.0, help="repeat alpha presence penalty (0.0 = disabled)",dest="presence_penalty") | |
parser.add_argument("--mirostat", type=float, default=1.0, help="use Mirostat sampling.",dest="mirostat") | |
parser.add_argument("--mirostat_ent", type=float, default=5.0, help="Mirostat target entropy, parameter tau represents the average surprise value",dest="mirostat_tau") | |
parser.add_argument("--mirostat_lr", type=float, default=0.1, help="Mirostat learning rate, parameter eta",dest="mirostat_eta") | |
parser.add_argument("-m", "--model", type=str, default="./models/llama-7B/ggml-model.bin", help="model path",dest="model") | |
parser.add_argument("-p", "--prompt", type=str, default=None, help="initial prompt",dest="prompt") | |
parser.add_argument("-f", "--file", type=str, default=None, help="file containing initial prompt to load",dest="file") | |
parser.add_argument("--session", type=str, default=None, help="file to cache model state in (may be large!)",dest="path_session") | |
parser.add_argument("--in-prefix", type=str, default="", help="string to prefix user inputs with", dest="input_prefix") | |
parser.add_argument("--in-suffix", type=str, default="", help="append to input", dest="input_suffix") | |
parser.add_argument( | |
"-r", | |
"--reverse-prompt", | |
type=str, | |
action='append', | |
help="poll user input upon seeing PROMPT (can be\nspecified more than once for multiple prompts).", | |
dest="antiprompt" | |
) | |
parser.add_argument("--lora", type=str, default="", help="apply LoRA adapter (implies --no-mmap)", dest="lora_adapter") | |
parser.add_argument("--lora-base", type=str, default="", help="optional model to use as a base for the layers modified by the LoRA adapter", dest="lora_base") | |
parser.add_argument("--memory_f32", action="store_false", help="use f32 instead of f16 for memory key+value",dest="memory_f16") | |
parser.add_argument("--random-prompt", action="store_true", help="start with a randomized prompt.", dest="random_prompt") | |
parser.add_argument( | |
"--color", | |
action="store_true", | |
help="colorise output to distinguish prompt and user input from generations", | |
dest="use_color" | |
) | |
parser.add_argument( | |
"-i", "--interactive", action="store_true", help="run in interactive mode", dest="interactive" | |
) | |
parser.add_argument("--embedding", action="store_true", help="", dest="embedding") | |
parser.add_argument( | |
"--interactive-first", | |
action="store_true", | |
help="run in interactive mode and wait for input right away", | |
dest="interactive_start" | |
) | |
parser.add_argument( | |
"-ins", | |
"--instruct", | |
action="store_true", | |
help="run in instruction mode (use with Alpaca or Vicuna models)", | |
dest="instruct" | |
) | |
parser.add_argument("--no-penalize-nl", action="store_false", help="do not penalize newline token", dest="penalize_nl") | |
parser.add_argument("--perplexity", action="store_true", help="compute perplexity over the prompt", dest="perplexity") | |
parser.add_argument("--no-mmap", action="store_false",help="do not memory-map model (slower load but may reduce pageouts if not using mlock)",dest="use_mmap") | |
parser.add_argument("--mlock", action="store_true",help="force system to keep model in RAM rather than swapping or compressing",dest="use_mlock") | |
parser.add_argument("--mtest", action="store_true",help="compute maximum memory usage",dest="mem_test") | |
parser.add_argument("--verbose-prompt", action="store_true",help="print prompt before generation",dest="verbose_prompt") | |
#Custom args | |
parser.add_argument("--fix-prefix", type=str, default="", help="append to input when generated n_predict tokens", dest="fix_prefix") | |
parser.add_argument("--input-noecho", action="store_false", help="dont output the input", dest="input_echo") | |
parser.add_argument( | |
"--interactive-start", | |
action="store_true", | |
help="run in interactive mode", | |
dest="interactive" | |
) | |
args = parser.parse_args(argv) | |
logit_bias_str = args.logit_bias_str | |
delattr(args, "logit_bias_str") | |
params = GptParams(**vars(args)) | |
if (params.lora_adapter): | |
params.use_mmap = False | |
if (logit_bias_str != None): | |
for i in logit_bias_str: | |
if (m := re.match(r"(\d+)([-+]\d+)", i)): | |
params.logit_bias[int(m.group(1))] = float(m.group(2)) | |
return params | |
def gpt_random_prompt(rng): | |
return [ | |
"So", | |
"Once upon a time", | |
"When", | |
"The", | |
"After", | |
"If", | |
"import", | |
"He", | |
"She", | |
"They", | |
][rng % 10] | |
if __name__ == "__main__": | |
print(gpt_params_parse()) | |