import os __import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') from dotenv import load_dotenv import json import gradio as gr import chromadb from llama_index.core import ( VectorStoreIndex, StorageContext, Settings, download_loader, ) from llama_index.llms.mistralai import MistralAI from llama_index.embeddings.mistralai import MistralAIEmbedding from llama_index.vector_stores.chroma import ChromaVectorStore load_dotenv() title = "AgreenDefi Gaia 8x22b PDF Demo" description = "Example of an assistant with Gradio, RAG from PDF documents and Mistral AI via its API" placeholder = ( "Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider" ) llm_model = "open-mixtral-8x22b" env_api_key = os.environ.get("MISTRAL_API_KEY") query_engine = None # Define LLMs llm = MistralAI(api_key=env_api_key, model=llm_model) embed_model = MistralAIEmbedding(model_name="mistral-embed", api_key=env_api_key) # create client and a new collection db = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db.get_or_create_collection("quickstart") # set up ChromaVectorStore and load in data vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) Settings.llm = llm Settings.embed_model = embed_model Settings.chunk_size = 1024 PDFReader = download_loader("PDFReader") loader = PDFReader() index = VectorStoreIndex( [], storage_context=storage_context ) query_engine = index.as_query_engine(similarity_top_k=5) def get_documents_in_db(): print("Fetching documents in DB") docs = [] for item in chroma_collection.get(include=["metadatas"])["metadatas"]: docs.append(json.loads(item["_node_content"])["metadata"]["file_name"]) docs = list(set(docs)) print(f"Found {len(docs)} documents") out = "**List of files in db:**\n" for d in docs: out += " - " + d + "\n" return out def empty_db(): ids = chroma_collection.get()["ids"] chroma_collection.delete(ids) return get_documents_in_db() def load_file(files): for file in files: documents = loader.load_data(file=file) for doc in documents: index.insert(doc) return ( gr.Textbox(visible=False), gr.Textbox(value=f"Document encoded ! You can ask questions", visible=True), get_documents_in_db(), ) def load_document(input_file): file_name = input_file.name.split("/")[-1] return gr.Textbox(value=f"Document loaded: {file_name}", visible=True) with gr.Blocks() as demo: gr.Markdown( """ # Bienvenue sur la démo AgreenDefi PDF Ajouter un fichier avant de poser une question sur le tchat. Cette démo vous permet d'interagir entre des fichiers PDF et Mistral AI via son API. Mistral va répondre à vos questions par rapport au document. *The files will stay in the database unless there is 48h of inactivty or you re-build the space.* """ ) gr.Markdown(""" ### 1 / Préparer les données """) with gr.Row(): with gr.Column(): input_file = gr.File( label="Charger des fichiers pdf", file_types=[".pdf"], file_count="multiple", type="filepath", interactive=True, ) file_msg = gr.Textbox( label="Loaded documents:", container=False, visible=False ) input_file.upload( fn=load_document, inputs=[ input_file, ], outputs=[file_msg], concurrency_limit=20, ) help_msg = gr.Markdown( value="Quan le document est chargé, Appuyer sur Encode pour l'ajouter dans la base de données." ) file_btn = gr.Button(value="Encoder les fichiers ✅", interactive=True) btn_msg = gr.Textbox(container=False, visible=False) with gr.Row(): db_list = gr.Markdown(value=get_documents_in_db) delete_btn = gr.Button(value="Vider la base 🗑️", interactive=True, scale=0) file_btn.click( load_file, inputs=[input_file], outputs=[file_msg, btn_msg, db_list], show_progress="full", ) delete_btn.click(empty_db, outputs=[db_list], show_progress="minimal") gr.Markdown(""" ### 2 / Poser une question selon le contexte """) chatbot = gr.Chatbot() msg = gr.Textbox(placeholder=placeholder) clear = gr.ClearButton([msg, chatbot]) def respond(message, chat_history): response = query_engine.query(message) chat_history.append((message, str(response))) return chat_history msg.submit(respond, [msg, chatbot], [chatbot]) demo.title = title demo.launch()