AIGC-3D / svrm /ldm /vis_util.py
Huiwenshi's picture
Upload folder using huggingface_hub
e3e5f9e verified
import os
from typing import List, Optional
from PIL import Image
import imageio
import time
import torch
from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj
from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.common.datatypes import Device
from pytorch3d.structures import Meshes
from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
PointLights,
DirectionalLights,
AmbientLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesUV,
TexturesVertex,
camera_position_from_spherical_angles,
BlendParams,
)
def render(
obj_filename,
elev=0,
azim=0,
resolution=512,
gif_dst_path='',
n_views=120,
fps=30,
device="cuda:0",
rgb=False
):
'''
obj_filename: path to obj file
gif_dst_path:
if set a path, will render n_views frames, then save it to a gif file
if not set, will render single frame, then return PIL.Image instance
rgb: if set true, will convert result to rgb image/frame
'''
# load mesh
mesh = load_objs_as_meshes([obj_filename], device=device)
meshes = mesh.extend(n_views)
if gif_dst_path != '':
elev = torch.linspace(elev, elev, n_views+1)[:-1]
azim = torch.linspace(0, 360, n_views+1)[:-1]
# prepare R,T then compute cameras
R, T = look_at_view_transform(dist=1.5, elev=elev, azim=azim)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=49.1)
# init pytorch3d renderer instance
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=RasterizationSettings(
image_size=resolution,
blur_radius=0.0,
faces_per_pixel=1,
),
),
shader=SoftPhongShader(
device=device,
cameras=cameras,
lights=AmbientLights(device=device),
blend_params=BlendParams(background_color=(1.0, 1.0, 1.0)),
)
)
images = renderer(meshes)
# single frame rendering
if gif_dst_path == '':
frame = images[0, ..., :3] if rgb else images[0, ...]
frame = Image.fromarray((frame.cpu().squeeze(0) * 255).numpy().astype("uint8"))
return frame
# orbit frames rendering
with imageio.get_writer(uri=gif_dst_path, mode='I', duration=1. / fps * 1000, loop=0) as writer:
for i in range(n_views):
frame = images[i, ..., :3] if rgb else images[i, ...]
frame = Image.fromarray((frame.cpu().squeeze(0) * 255).numpy().astype("uint8"))
writer.append_data(frame)
return gif_dst_path