flightscope-test / inference /ssd_config.py
agucci's picture
Initial test
3b82ac6
raw
history blame
11.9 kB
dataset_type = 'CocoDataset'
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/'
backend_args = None
max_epochs = 500
metainfo = dict(
classes=('airplane', ), palette=[
(
0,
0,
255,
),
])
num_classes = 1
batch_size = 128
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Expand',
mean=[
123.675,
116.28,
103.53,
],
to_rgb=True,
ratio_range=(
1,
4,
)),
dict(
type='MinIoURandomCrop',
min_ious=(
0.1,
0.3,
0.5,
0.7,
0.9,
),
min_crop_size=0.3),
dict(type='Resize', scale=(
320,
320,
), keep_ratio=False),
dict(type='RandomFlip', prob=0.5),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(
0.5,
1.5,
),
saturation_range=(
0.5,
1.5,
),
hue_delta=18),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(
320,
320,
), keep_ratio=False),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
]
train_dataloader = dict(
batch_size=128,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=None,
dataset=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type='CocoDataset',
metainfo=dict(classes=('airplane', ), palette=[
(
220,
20,
60,
),
]),
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
ann_file='train/__coco.json',
data_prefix=dict(img='train/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Expand',
mean=[
123.675,
116.28,
103.53,
],
to_rgb=True,
ratio_range=(
1,
4,
)),
dict(
type='MinIoURandomCrop',
min_ious=(
0.1,
0.3,
0.5,
0.7,
0.9,
),
min_crop_size=0.3),
dict(type='Resize', scale=(
320,
320,
), keep_ratio=False),
dict(type='RandomFlip', prob=0.5),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(
0.5,
1.5,
),
saturation_range=(
0.5,
1.5,
),
hue_delta=18),
dict(type='PackDetInputs'),
])))
val_dataloader = dict(
batch_size=128,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='CocoDataset',
metainfo=dict(classes=('airplane', ), palette=[
(
220,
20,
60,
),
]),
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
ann_file='val/__coco.json',
data_prefix=dict(img='val/'),
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(
320,
320,
), keep_ratio=False),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
],
backend_args=None))
test_dataloader = dict(
batch_size=128,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='CocoDataset',
metainfo=dict(classes=('airplane', ), palette=[
(
220,
20,
60,
),
]),
data_root='/home/safouane/Downloads/benchmark_aircraft/data/',
ann_file='test/__coco.json',
data_prefix=dict(img='test/'),
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(
320,
320,
), keep_ratio=False),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
],
backend_args=None))
val_evaluator = dict(
type='CocoMetric',
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json',
metric='bbox',
format_only=False,
backend_args=None)
test_evaluator = dict(
type='CocoMetric',
ann_file=
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json',
metric='bbox',
format_only=False,
backend_args=None)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='CosineAnnealingLR',
begin=0,
T_max=120,
end=120,
by_epoch=True,
eta_min=0),
]
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=4e-05))
auto_scale_lr = dict(enable=False, base_batch_size=64)
default_scope = 'mmdet'
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=20, save_best='auto'),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='DetVisualizationHook'))
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
type='DetLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
],
name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/ssd/checkpoints/ssdlite_mobilenetv2_scratch_600e_coco_20210629_110627-974d9307.pth'
resume = False
data_preprocessor = dict(
type='DetDataPreprocessor',
mean=[
123.675,
116.28,
103.53,
],
std=[
58.395,
57.12,
57.375,
],
bgr_to_rgb=True,
pad_size_divisor=1)
model = dict(
type='SingleStageDetector',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[
123.675,
116.28,
103.53,
],
std=[
58.395,
57.12,
57.375,
],
bgr_to_rgb=True,
pad_size_divisor=1),
backbone=dict(
type='MobileNetV2',
out_indices=(
4,
7,
),
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
neck=dict(
type='SSDNeck',
in_channels=(
96,
1280,
),
out_channels=(
96,
1280,
512,
256,
256,
128,
),
level_strides=(
2,
2,
2,
2,
),
level_paddings=(
1,
1,
1,
1,
),
l2_norm_scale=None,
use_depthwise=True,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
act_cfg=dict(type='ReLU6'),
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
bbox_head=dict(
type='SSDHead',
in_channels=(
96,
1280,
512,
256,
256,
128,
),
num_classes=1,
use_depthwise=True,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
act_cfg=dict(type='ReLU6'),
init_cfg=dict(type='Normal', layer='Conv2d', std=0.001),
anchor_generator=dict(
type='SSDAnchorGenerator',
scale_major=False,
strides=[
16,
32,
64,
107,
160,
320,
],
ratios=[
[
2,
3,
],
[
2,
3,
],
[
2,
3,
],
[
2,
3,
],
[
2,
3,
],
[
2,
3,
],
],
min_sizes=[
48,
100,
150,
202,
253,
304,
],
max_sizes=[
100,
150,
202,
253,
304,
320,
]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[
0.0,
0.0,
0.0,
0.0,
],
target_stds=[
0.1,
0.1,
0.2,
0.2,
])),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.0,
ignore_iof_thr=-1,
gt_max_assign_all=False),
sampler=dict(type='PseudoSampler'),
smoothl1_beta=1.0,
allowed_border=-1,
pos_weight=-1,
neg_pos_ratio=3,
debug=False),
test_cfg=dict(
nms_pre=1000,
nms=dict(type='nms', iou_threshold=0.45),
min_bbox_size=0,
score_thr=0.02,
max_per_img=200))
input_size = 320
custom_hooks = [
dict(type='NumClassCheckHook'),
dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW'),
]
launcher = 'none'
work_dir = './work_dirs/ssdlite_mobilenetv2-scratch_8xb24-600e_coco'