File size: 5,200 Bytes
a153039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import librosa
import torch
from torch import nn


class TorchSTFT(nn.Module):  # pylint: disable=abstract-method
    """Some of the audio processing funtions using Torch for faster batch processing.

    Args:

        n_fft (int):
            FFT window size for STFT.

        hop_length (int):
            number of frames between STFT columns.

        win_length (int, optional):
            STFT window length.

        pad_wav (bool, optional):
            If True pad the audio with (n_fft - hop_length) / 2). Defaults to False.

        window (str, optional):
            The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window"

        sample_rate (int, optional):
            target audio sampling rate. Defaults to None.

        mel_fmin (int, optional):
            minimum filter frequency for computing melspectrograms. Defaults to None.

        mel_fmax (int, optional):
            maximum filter frequency for computing melspectrograms. Defaults to None.

        n_mels (int, optional):
            number of melspectrogram dimensions. Defaults to None.

        use_mel (bool, optional):
            If True compute the melspectrograms otherwise. Defaults to False.

        do_amp_to_db_linear (bool, optional):
            enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False.

        spec_gain (float, optional):
            gain applied when converting amplitude to DB. Defaults to 1.0.

        power (float, optional):
            Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc.  Defaults to None.

        use_htk (bool, optional):
            Use HTK formula in mel filter instead of Slaney.

        mel_norm (None, 'slaney', or number, optional):
            If 'slaney', divide the triangular mel weights by the width of the mel band
            (area normalization).

            If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
            See `librosa.util.normalize` for a full description of supported norm values
            (including `+-np.inf`).

            Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney".
    """

    def __init__(
        self,
        n_fft,
        hop_length,
        win_length,
        pad_wav=False,
        window="hann_window",
        sample_rate=None,
        mel_fmin=0,
        mel_fmax=None,
        n_mels=80,
        use_mel=False,
        do_amp_to_db=False,
        spec_gain=1.0,
        power=None,
        use_htk=False,
        mel_norm="slaney",
        normalized=False,
    ):
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.pad_wav = pad_wav
        self.sample_rate = sample_rate
        self.mel_fmin = mel_fmin
        self.mel_fmax = mel_fmax
        self.n_mels = n_mels
        self.use_mel = use_mel
        self.do_amp_to_db = do_amp_to_db
        self.spec_gain = spec_gain
        self.power = power
        self.use_htk = use_htk
        self.mel_norm = mel_norm
        self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
        self.mel_basis = None
        self.normalized = normalized
        if use_mel:
            self._build_mel_basis()

    def __call__(self, x):
        """Compute spectrogram frames by torch based stft.

        Args:
            x (Tensor): input waveform

        Returns:
            Tensor: spectrogram frames.

        Shapes:
            x: [B x T] or [:math:`[B, 1, T]`]
        """
        if x.ndim == 2:
            x = x.unsqueeze(1)
        if self.pad_wav:
            padding = int((self.n_fft - self.hop_length) / 2)
            x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
        # B x D x T x 2
        o = torch.stft(
            x.squeeze(1),
            self.n_fft,
            self.hop_length,
            self.win_length,
            self.window,
            center=True,
            pad_mode="reflect",  # compatible with audio.py
            normalized=self.normalized,
            onesided=True,
            return_complex=False,
        )
        M = o[:, :, :, 0]
        P = o[:, :, :, 1]
        S = torch.sqrt(torch.clamp(M**2 + P**2, min=1e-8))

        if self.power is not None:
            S = S**self.power

        if self.use_mel:
            S = torch.matmul(self.mel_basis.to(x), S)
        if self.do_amp_to_db:
            S = self._amp_to_db(S, spec_gain=self.spec_gain)
        return S

    def _build_mel_basis(self):
        mel_basis = librosa.filters.mel(
            sr=self.sample_rate,
            n_fft=self.n_fft,
            n_mels=self.n_mels,
            fmin=self.mel_fmin,
            fmax=self.mel_fmax,
            htk=self.use_htk,
            norm=self.mel_norm,
        )
        self.mel_basis = torch.from_numpy(mel_basis).float()

    @staticmethod
    def _amp_to_db(x, spec_gain=1.0):
        return torch.log(torch.clamp(x, min=1e-5) * spec_gain)

    @staticmethod
    def _db_to_amp(x, spec_gain=1.0):
        return torch.exp(x) / spec_gain