File size: 22,642 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import json
import os
import random
import unittest
from pathlib import Path

from transformers.testing_utils import (
    is_pipeline_test,
    require_decord,
    require_pytesseract,
    require_timm,
    require_torch,
    require_torch_or_tf,
    require_vision,
)
from transformers.utils import direct_transformers_import, logging

from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
from .pipelines.test_pipelines_conversational import ConversationalPipelineTests
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
from .pipelines.test_pipelines_question_answering import QAPipelineTests
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
from .pipelines.test_pipelines_translation import TranslationPipelineTests
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests


pipeline_test_mapping = {
    "audio-classification": {"test": AudioClassificationPipelineTests},
    "automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
    "conversational": {"test": ConversationalPipelineTests},
    "depth-estimation": {"test": DepthEstimationPipelineTests},
    "document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
    "feature-extraction": {"test": FeatureExtractionPipelineTests},
    "fill-mask": {"test": FillMaskPipelineTests},
    "image-classification": {"test": ImageClassificationPipelineTests},
    "image-segmentation": {"test": ImageSegmentationPipelineTests},
    "image-to-text": {"test": ImageToTextPipelineTests},
    "mask-generation": {"test": MaskGenerationPipelineTests},
    "object-detection": {"test": ObjectDetectionPipelineTests},
    "question-answering": {"test": QAPipelineTests},
    "summarization": {"test": SummarizationPipelineTests},
    "table-question-answering": {"test": TQAPipelineTests},
    "text2text-generation": {"test": Text2TextGenerationPipelineTests},
    "text-classification": {"test": TextClassificationPipelineTests},
    "text-generation": {"test": TextGenerationPipelineTests},
    "text-to-audio": {"test": TextToAudioPipelineTests},
    "token-classification": {"test": TokenClassificationPipelineTests},
    "translation": {"test": TranslationPipelineTests},
    "video-classification": {"test": VideoClassificationPipelineTests},
    "visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
    "zero-shot": {"test": ZeroShotClassificationPipelineTests},
    "zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
    "zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
    "zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
}

for task, task_info in pipeline_test_mapping.items():
    test = task_info["test"]
    task_info["mapping"] = {
        "pt": getattr(test, "model_mapping", None),
        "tf": getattr(test, "tf_model_mapping", None),
    }


# The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub.
# For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of
# `utils/create_dummy_models.py`.
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing")
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing":
    TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
else:
    TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json")
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
    tiny_model_summary = json.load(fp)


PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")


# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)

logger = logging.get_logger(__name__)


class PipelineTesterMixin:
    model_tester = None
    pipeline_model_mapping = None
    supported_frameworks = ["pt", "tf"]

    def run_task_tests(self, task):
        """Run pipeline tests for a specific `task`

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
        """
        if task not in self.pipeline_model_mapping:
            self.skipTest(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in "
                f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
            )

        model_architectures = self.pipeline_model_mapping[task]
        if not isinstance(model_architectures, tuple):
            model_architectures = (model_architectures,)
        if not isinstance(model_architectures, tuple):
            raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")

        for model_architecture in model_architectures:
            model_arch_name = model_architecture.__name__

            # Get the canonical name
            for _prefix in ["Flax", "TF"]:
                if model_arch_name.startswith(_prefix):
                    model_arch_name = model_arch_name[len(_prefix) :]
                    break

            tokenizer_names = []
            processor_names = []
            commit = None
            if model_arch_name in tiny_model_summary:
                tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
                processor_names = tiny_model_summary[model_arch_name]["processor_classes"]
                if "sha" in tiny_model_summary[model_arch_name]:
                    commit = tiny_model_summary[model_arch_name]["sha"]
            # Adding `None` (if empty) so we can generate tests
            tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names
            processor_names = [None] if len(processor_names) == 0 else processor_names

            repo_name = f"tiny-random-{model_arch_name}"
            if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
                repo_name = model_arch_name

            self.run_model_pipeline_tests(
                task, repo_name, model_architecture, tokenizer_names, processor_names, commit
            )

    def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names, commit):
        """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
            repo_name (`str`):
                A model repository id on the Hub.
            model_architecture (`type`):
                A subclass of `PretrainedModel` or `PretrainedModel`.
            tokenizer_names (`List[str]`):
                A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
            processor_names (`List[str]`):
                A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`.
        """
        # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
        # `run_pipeline_test`.
        pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__

        for tokenizer_name in tokenizer_names:
            for processor_name in processor_names:
                if self.is_pipeline_test_to_skip(
                    pipeline_test_class_name,
                    model_architecture.config_class,
                    model_architecture,
                    tokenizer_name,
                    processor_name,
                ):
                    logger.warning(
                        f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
                        f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
                        f"`{tokenizer_name}` | processor `{processor_name}`."
                    )
                    continue
                self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name, commit)

    def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name, commit):
        """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name

        The model will be loaded from a model repository on the Hub.

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
            repo_name (`str`):
                A model repository id on the Hub.
            model_architecture (`type`):
                A subclass of `PretrainedModel` or `PretrainedModel`.
            tokenizer_name (`str`):
                The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
            processor_name (`str`):
                The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`.
        """
        repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}"
        if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
            model_type = model_architecture.config_class.model_type
            repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name)

        tokenizer = None
        if tokenizer_name is not None:
            tokenizer_class = getattr(transformers_module, tokenizer_name)
            tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit)

        processor = None
        if processor_name is not None:
            processor_class = getattr(transformers_module, processor_name)
            # If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail.
            try:
                processor = processor_class.from_pretrained(repo_id, revision=commit)
            except Exception:
                logger.warning(
                    f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the "
                    f"processor from `{repo_id}` with `{processor_name}`."
                )
                return

        # TODO: Maybe not upload such problematic tiny models to Hub.
        if tokenizer is None and processor is None:
            logger.warning(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
                f"any tokenizer / processor from `{repo_id}`."
            )
            return

        # TODO: We should check if a model file is on the Hub repo. instead.
        try:
            model = model_architecture.from_pretrained(repo_id, revision=commit)
        except Exception:
            logger.warning(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
                f"the model from `{repo_id}` with `{model_architecture}`."
            )
            return

        pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
        if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, processor):
            logger.warning(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
                f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
                f"`{tokenizer_name}` | processor `{processor_name}`."
            )
            return

        # validate
        validate_test_components(self, task, model, tokenizer, processor)

        if hasattr(model, "eval"):
            model = model.eval()

        # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
        # `run_pipeline_test`.
        task_test = pipeline_test_mapping[task]["test"]()

        pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor)
        if pipeline is None:
            # The test can disable itself, but it should be very marginal
            # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
            logger.warning(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the "
                "pipeline for testing."
            )
            return

        task_test.run_pipeline_test(pipeline, examples)

        def run_batch_test(pipeline, examples):
            # Need to copy because `Conversation` are stateful
            if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                return  # No batching for this and it's OK

            # 10 examples with batch size 4 means there needs to be a unfinished batch
            # which is important for the unbatcher
            def data(n):
                for _ in range(n):
                    # Need to copy because Conversation object is mutated
                    yield copy.deepcopy(random.choice(examples))

            out = []
            for item in pipeline(data(10), batch_size=4):
                out.append(item)
            self.assertEqual(len(out), 10)

        run_batch_test(pipeline, examples)

    @is_pipeline_test
    def test_pipeline_audio_classification(self):
        self.run_task_tests(task="audio-classification")

    @is_pipeline_test
    def test_pipeline_automatic_speech_recognition(self):
        self.run_task_tests(task="automatic-speech-recognition")

    @is_pipeline_test
    def test_pipeline_conversational(self):
        self.run_task_tests(task="conversational")

    @is_pipeline_test
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_depth_estimation(self):
        self.run_task_tests(task="depth-estimation")

    @is_pipeline_test
    @require_pytesseract
    @require_torch
    @require_vision
    def test_pipeline_document_question_answering(self):
        self.run_task_tests(task="document-question-answering")

    @is_pipeline_test
    def test_pipeline_feature_extraction(self):
        self.run_task_tests(task="feature-extraction")

    @is_pipeline_test
    def test_pipeline_fill_mask(self):
        self.run_task_tests(task="fill-mask")

    @is_pipeline_test
    @require_torch_or_tf
    @require_vision
    def test_pipeline_image_classification(self):
        self.run_task_tests(task="image-classification")

    @is_pipeline_test
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_image_segmentation(self):
        self.run_task_tests(task="image-segmentation")

    @is_pipeline_test
    @require_vision
    def test_pipeline_image_to_text(self):
        self.run_task_tests(task="image-to-text")

    @unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
    @is_pipeline_test
    @require_vision
    @require_torch
    def test_pipeline_mask_generation(self):
        self.run_task_tests(task="mask-generation")

    @is_pipeline_test
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_object_detection(self):
        self.run_task_tests(task="object-detection")

    @is_pipeline_test
    def test_pipeline_question_answering(self):
        self.run_task_tests(task="question-answering")

    @is_pipeline_test
    def test_pipeline_summarization(self):
        self.run_task_tests(task="summarization")

    @is_pipeline_test
    def test_pipeline_table_question_answering(self):
        self.run_task_tests(task="table-question-answering")

    @is_pipeline_test
    def test_pipeline_text2text_generation(self):
        self.run_task_tests(task="text2text-generation")

    @is_pipeline_test
    def test_pipeline_text_classification(self):
        self.run_task_tests(task="text-classification")

    @is_pipeline_test
    @require_torch_or_tf
    def test_pipeline_text_generation(self):
        self.run_task_tests(task="text-generation")

    @is_pipeline_test
    @require_torch
    def test_pipeline_text_to_audio(self):
        self.run_task_tests(task="text-to-audio")

    @is_pipeline_test
    def test_pipeline_token_classification(self):
        self.run_task_tests(task="token-classification")

    @is_pipeline_test
    def test_pipeline_translation(self):
        self.run_task_tests(task="translation")

    @is_pipeline_test
    @require_torch_or_tf
    @require_vision
    @require_decord
    def test_pipeline_video_classification(self):
        self.run_task_tests(task="video-classification")

    @is_pipeline_test
    @require_torch
    @require_vision
    def test_pipeline_visual_question_answering(self):
        self.run_task_tests(task="visual-question-answering")

    @is_pipeline_test
    def test_pipeline_zero_shot(self):
        self.run_task_tests(task="zero-shot")

    @is_pipeline_test
    @require_torch
    def test_pipeline_zero_shot_audio_classification(self):
        self.run_task_tests(task="zero-shot-audio-classification")

    @is_pipeline_test
    @require_vision
    def test_pipeline_zero_shot_image_classification(self):
        self.run_task_tests(task="zero-shot-image-classification")

    @is_pipeline_test
    @require_vision
    @require_torch
    def test_pipeline_zero_shot_object_detection(self):
        self.run_task_tests(task="zero-shot-object-detection")

    # This contains the test cases to be skipped without model architecture being involved.
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        """Skip some tests based on the classes or their names without the instantiated objects.

        This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail.
        """
        # No fix is required for this case.
        if (
            pipeline_test_casse_name == "DocumentQuestionAnsweringPipelineTests"
            and tokenizer_name is not None
            and not tokenizer_name.endswith("Fast")
        ):
            # `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer.
            return True

        return False

    def is_pipeline_test_to_skip_more(self, pipeline_test_casse_name, config, model, tokenizer, processor):  # noqa
        """Skip some more tests based on the information from the instantiated objects."""
        # No fix is required for this case.
        if (
            pipeline_test_casse_name == "QAPipelineTests"
            and tokenizer is not None
            and getattr(tokenizer, "pad_token", None) is None
            and not tokenizer.__class__.__name__.endswith("Fast")
        ):
            # `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token.
            return True

        return False


def validate_test_components(test_case, task, model, tokenizer, processor):
    # TODO: Move this to tiny model creation script
    # head-specific (within a model type) necessary changes to the config
    # 1. for `BlenderbotForCausalLM`
    if model.__class__.__name__ == "BlenderbotForCausalLM":
        model.config.encoder_no_repeat_ngram_size = 0

    # TODO: Change the tiny model creation script: don't create models with problematic tokenizers
    # Avoid `IndexError` in embedding layers
    CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
    if tokenizer is not None:
        config_vocab_size = getattr(model.config, "vocab_size", None)
        # For CLIP-like models
        if config_vocab_size is None and hasattr(model.config, "text_config"):
            config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
        if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
            raise ValueError(
                "Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
            )