Spaces:
Paused
Paused
File size: 22,642 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import random
import unittest
from pathlib import Path
from transformers.testing_utils import (
is_pipeline_test,
require_decord,
require_pytesseract,
require_timm,
require_torch,
require_torch_or_tf,
require_vision,
)
from transformers.utils import direct_transformers_import, logging
from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
from .pipelines.test_pipelines_conversational import ConversationalPipelineTests
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
from .pipelines.test_pipelines_question_answering import QAPipelineTests
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
from .pipelines.test_pipelines_translation import TranslationPipelineTests
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests
pipeline_test_mapping = {
"audio-classification": {"test": AudioClassificationPipelineTests},
"automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
"conversational": {"test": ConversationalPipelineTests},
"depth-estimation": {"test": DepthEstimationPipelineTests},
"document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
"feature-extraction": {"test": FeatureExtractionPipelineTests},
"fill-mask": {"test": FillMaskPipelineTests},
"image-classification": {"test": ImageClassificationPipelineTests},
"image-segmentation": {"test": ImageSegmentationPipelineTests},
"image-to-text": {"test": ImageToTextPipelineTests},
"mask-generation": {"test": MaskGenerationPipelineTests},
"object-detection": {"test": ObjectDetectionPipelineTests},
"question-answering": {"test": QAPipelineTests},
"summarization": {"test": SummarizationPipelineTests},
"table-question-answering": {"test": TQAPipelineTests},
"text2text-generation": {"test": Text2TextGenerationPipelineTests},
"text-classification": {"test": TextClassificationPipelineTests},
"text-generation": {"test": TextGenerationPipelineTests},
"text-to-audio": {"test": TextToAudioPipelineTests},
"token-classification": {"test": TokenClassificationPipelineTests},
"translation": {"test": TranslationPipelineTests},
"video-classification": {"test": VideoClassificationPipelineTests},
"visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
"zero-shot": {"test": ZeroShotClassificationPipelineTests},
"zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
"zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
"zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
}
for task, task_info in pipeline_test_mapping.items():
test = task_info["test"]
task_info["mapping"] = {
"pt": getattr(test, "model_mapping", None),
"tf": getattr(test, "tf_model_mapping", None),
}
# The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub.
# For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of
# `utils/create_dummy_models.py`.
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing")
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing":
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
else:
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json")
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
tiny_model_summary = json.load(fp)
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
logger = logging.get_logger(__name__)
class PipelineTesterMixin:
model_tester = None
pipeline_model_mapping = None
supported_frameworks = ["pt", "tf"]
def run_task_tests(self, task):
"""Run pipeline tests for a specific `task`
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
"""
if task not in self.pipeline_model_mapping:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in "
f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
)
model_architectures = self.pipeline_model_mapping[task]
if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,)
if not isinstance(model_architectures, tuple):
raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")
for model_architecture in model_architectures:
model_arch_name = model_architecture.__name__
# Get the canonical name
for _prefix in ["Flax", "TF"]:
if model_arch_name.startswith(_prefix):
model_arch_name = model_arch_name[len(_prefix) :]
break
tokenizer_names = []
processor_names = []
commit = None
if model_arch_name in tiny_model_summary:
tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
processor_names = tiny_model_summary[model_arch_name]["processor_classes"]
if "sha" in tiny_model_summary[model_arch_name]:
commit = tiny_model_summary[model_arch_name]["sha"]
# Adding `None` (if empty) so we can generate tests
tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names
processor_names = [None] if len(processor_names) == 0 else processor_names
repo_name = f"tiny-random-{model_arch_name}"
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
repo_name = model_arch_name
self.run_model_pipeline_tests(
task, repo_name, model_architecture, tokenizer_names, processor_names, commit
)
def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names, commit):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_names (`List[str]`):
A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
processor_names (`List[str]`):
A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`.
"""
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
for tokenizer_name in tokenizer_names:
for processor_name in processor_names:
if self.is_pipeline_test_to_skip(
pipeline_test_class_name,
model_architecture.config_class,
model_architecture,
tokenizer_name,
processor_name,
):
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
f"`{tokenizer_name}` | processor `{processor_name}`."
)
continue
self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name, commit)
def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name, commit):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name
The model will be loaded from a model repository on the Hub.
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_name (`str`):
The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
processor_name (`str`):
The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`.
"""
repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}"
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
model_type = model_architecture.config_class.model_type
repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name)
tokenizer = None
if tokenizer_name is not None:
tokenizer_class = getattr(transformers_module, tokenizer_name)
tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit)
processor = None
if processor_name is not None:
processor_class = getattr(transformers_module, processor_name)
# If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail.
try:
processor = processor_class.from_pretrained(repo_id, revision=commit)
except Exception:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the "
f"processor from `{repo_id}` with `{processor_name}`."
)
return
# TODO: Maybe not upload such problematic tiny models to Hub.
if tokenizer is None and processor is None:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
f"any tokenizer / processor from `{repo_id}`."
)
return
# TODO: We should check if a model file is on the Hub repo. instead.
try:
model = model_architecture.from_pretrained(repo_id, revision=commit)
except Exception:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
f"the model from `{repo_id}` with `{model_architecture}`."
)
return
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, processor):
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
f"`{tokenizer_name}` | processor `{processor_name}`."
)
return
# validate
validate_test_components(self, task, model, tokenizer, processor)
if hasattr(model, "eval"):
model = model.eval()
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
task_test = pipeline_test_mapping[task]["test"]()
pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor)
if pipeline is None:
# The test can disable itself, but it should be very marginal
# Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the "
"pipeline for testing."
)
return
task_test.run_pipeline_test(pipeline, examples)
def run_batch_test(pipeline, examples):
# Need to copy because `Conversation` are stateful
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
return # No batching for this and it's OK
# 10 examples with batch size 4 means there needs to be a unfinished batch
# which is important for the unbatcher
def data(n):
for _ in range(n):
# Need to copy because Conversation object is mutated
yield copy.deepcopy(random.choice(examples))
out = []
for item in pipeline(data(10), batch_size=4):
out.append(item)
self.assertEqual(len(out), 10)
run_batch_test(pipeline, examples)
@is_pipeline_test
def test_pipeline_audio_classification(self):
self.run_task_tests(task="audio-classification")
@is_pipeline_test
def test_pipeline_automatic_speech_recognition(self):
self.run_task_tests(task="automatic-speech-recognition")
@is_pipeline_test
def test_pipeline_conversational(self):
self.run_task_tests(task="conversational")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_depth_estimation(self):
self.run_task_tests(task="depth-estimation")
@is_pipeline_test
@require_pytesseract
@require_torch
@require_vision
def test_pipeline_document_question_answering(self):
self.run_task_tests(task="document-question-answering")
@is_pipeline_test
def test_pipeline_feature_extraction(self):
self.run_task_tests(task="feature-extraction")
@is_pipeline_test
def test_pipeline_fill_mask(self):
self.run_task_tests(task="fill-mask")
@is_pipeline_test
@require_torch_or_tf
@require_vision
def test_pipeline_image_classification(self):
self.run_task_tests(task="image-classification")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_image_segmentation(self):
self.run_task_tests(task="image-segmentation")
@is_pipeline_test
@require_vision
def test_pipeline_image_to_text(self):
self.run_task_tests(task="image-to-text")
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_mask_generation(self):
self.run_task_tests(task="mask-generation")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_object_detection(self):
self.run_task_tests(task="object-detection")
@is_pipeline_test
def test_pipeline_question_answering(self):
self.run_task_tests(task="question-answering")
@is_pipeline_test
def test_pipeline_summarization(self):
self.run_task_tests(task="summarization")
@is_pipeline_test
def test_pipeline_table_question_answering(self):
self.run_task_tests(task="table-question-answering")
@is_pipeline_test
def test_pipeline_text2text_generation(self):
self.run_task_tests(task="text2text-generation")
@is_pipeline_test
def test_pipeline_text_classification(self):
self.run_task_tests(task="text-classification")
@is_pipeline_test
@require_torch_or_tf
def test_pipeline_text_generation(self):
self.run_task_tests(task="text-generation")
@is_pipeline_test
@require_torch
def test_pipeline_text_to_audio(self):
self.run_task_tests(task="text-to-audio")
@is_pipeline_test
def test_pipeline_token_classification(self):
self.run_task_tests(task="token-classification")
@is_pipeline_test
def test_pipeline_translation(self):
self.run_task_tests(task="translation")
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
def test_pipeline_video_classification(self):
self.run_task_tests(task="video-classification")
@is_pipeline_test
@require_torch
@require_vision
def test_pipeline_visual_question_answering(self):
self.run_task_tests(task="visual-question-answering")
@is_pipeline_test
def test_pipeline_zero_shot(self):
self.run_task_tests(task="zero-shot")
@is_pipeline_test
@require_torch
def test_pipeline_zero_shot_audio_classification(self):
self.run_task_tests(task="zero-shot-audio-classification")
@is_pipeline_test
@require_vision
def test_pipeline_zero_shot_image_classification(self):
self.run_task_tests(task="zero-shot-image-classification")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_zero_shot_object_detection(self):
self.run_task_tests(task="zero-shot-object-detection")
# This contains the test cases to be skipped without model architecture being involved.
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
"""Skip some tests based on the classes or their names without the instantiated objects.
This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail.
"""
# No fix is required for this case.
if (
pipeline_test_casse_name == "DocumentQuestionAnsweringPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer.
return True
return False
def is_pipeline_test_to_skip_more(self, pipeline_test_casse_name, config, model, tokenizer, processor): # noqa
"""Skip some more tests based on the information from the instantiated objects."""
# No fix is required for this case.
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer is not None
and getattr(tokenizer, "pad_token", None) is None
and not tokenizer.__class__.__name__.endswith("Fast")
):
# `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token.
return True
return False
def validate_test_components(test_case, task, model, tokenizer, processor):
# TODO: Move this to tiny model creation script
# head-specific (within a model type) necessary changes to the config
# 1. for `BlenderbotForCausalLM`
if model.__class__.__name__ == "BlenderbotForCausalLM":
model.config.encoder_no_repeat_ngram_size = 0
# TODO: Change the tiny model creation script: don't create models with problematic tokenizers
# Avoid `IndexError` in embedding layers
CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
if tokenizer is not None:
config_vocab_size = getattr(model.config, "vocab_size", None)
# For CLIP-like models
if config_vocab_size is None and hasattr(model.config, "text_config"):
config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
raise ValueError(
"Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
)
|