Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import inspect | |
import json | |
import os | |
import random | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
from huggingface_hub import HfFolder, Repository, delete_repo | |
from huggingface_hub.file_download import http_get | |
from requests.exceptions import HTTPError | |
from transformers import is_tf_available, is_torch_available | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.testing_utils import ( # noqa: F401 | |
TOKEN, | |
USER, | |
CaptureLogger, | |
_tf_gpu_memory_limit, | |
is_pt_tf_cross_test, | |
is_staging_test, | |
require_safetensors, | |
require_tf, | |
slow, | |
) | |
from transformers.utils import SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging | |
logger = logging.get_logger(__name__) | |
if is_tf_available(): | |
import h5py | |
import numpy as np | |
import tensorflow as tf | |
from transformers import ( | |
BertConfig, | |
PreTrainedModel, | |
PushToHubCallback, | |
RagRetriever, | |
TFBertForMaskedLM, | |
TFBertForSequenceClassification, | |
TFBertModel, | |
TFPreTrainedModel, | |
TFRagModel, | |
) | |
from transformers.modeling_tf_utils import tf_shard_checkpoint, unpack_inputs | |
from transformers.tf_utils import stable_softmax | |
tf.config.experimental.enable_tensor_float_32_execution(False) | |
if _tf_gpu_memory_limit is not None: | |
gpus = tf.config.list_physical_devices("GPU") | |
for gpu in gpus: | |
# Restrict TensorFlow to only allocate x GB of memory on the GPUs | |
try: | |
tf.config.set_logical_device_configuration( | |
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] | |
) | |
logical_gpus = tf.config.list_logical_devices("GPU") | |
print("Logical GPUs", logical_gpus) | |
except RuntimeError as e: | |
# Virtual devices must be set before GPUs have been initialized | |
print(e) | |
if is_torch_available(): | |
from transformers import BertModel | |
class TFModelUtilsTest(unittest.TestCase): | |
def test_cached_files_are_used_when_internet_is_down(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
_ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# Under the mock environment we get a 500 error when trying to reach the model. | |
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: | |
_ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# This check we did call the fake head request | |
mock_head.assert_called() | |
def test_load_from_one_file(self): | |
try: | |
tmp_file = tempfile.mktemp() | |
with open(tmp_file, "wb") as f: | |
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", f) | |
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") | |
_ = TFBertModel.from_pretrained(tmp_file, config=config) | |
finally: | |
os.remove(tmp_file) | |
def test_legacy_load_from_url(self): | |
# This test is for deprecated behavior and can be removed in v5 | |
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") | |
_ = TFBertModel.from_pretrained( | |
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", config=config | |
) | |
# tests whether the unpack_inputs function behaves as expected | |
def test_unpack_inputs(self): | |
class DummyModel: | |
def __init__(self): | |
config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False} | |
self.config = PretrainedConfig(**config_kwargs) | |
self.main_input_name = "input_ids" | |
def call( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict | |
def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None): | |
return pixel_values, output_attentions, output_hidden_states, return_dict | |
dummy_model = DummyModel() | |
input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32) | |
past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32) | |
pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32) | |
# test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config. | |
output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values) | |
tf.debugging.assert_equal(output[0], input_ids) | |
tf.debugging.assert_equal(output[1], past_key_values) | |
self.assertFalse(output[2]) | |
self.assertFalse(output[3]) | |
self.assertFalse(output[4]) | |
# test case 2: Same as above, but with positional arguments. | |
output = dummy_model.call(input_ids, past_key_values) | |
tf.debugging.assert_equal(output[0], input_ids) | |
tf.debugging.assert_equal(output[1], past_key_values) | |
self.assertFalse(output[2]) | |
self.assertFalse(output[3]) | |
self.assertFalse(output[4]) | |
# test case 3: We can also pack everything in the first input. | |
output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values}) | |
tf.debugging.assert_equal(output[0], input_ids) | |
tf.debugging.assert_equal(output[1], past_key_values) | |
self.assertFalse(output[2]) | |
self.assertFalse(output[3]) | |
self.assertFalse(output[4]) | |
# test case 4: Explicit boolean arguments should override the config. | |
output = dummy_model.call( | |
input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True | |
) | |
tf.debugging.assert_equal(output[0], input_ids) | |
tf.debugging.assert_equal(output[1], past_key_values) | |
self.assertFalse(output[2]) | |
self.assertFalse(output[3]) | |
self.assertTrue(output[4]) | |
# test case 5: Unexpected arguments should raise an exception. | |
with self.assertRaises(ValueError): | |
output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar") | |
# test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the | |
# decorated function as its main input. | |
output = dummy_model.foo(pixel_values=pixel_values) | |
tf.debugging.assert_equal(output[0], pixel_values) | |
self.assertFalse(output[1]) | |
self.assertFalse(output[2]) | |
self.assertFalse(output[3]) | |
# Tests whether the stable softmax is stable on CPU, with and without XLA | |
def test_xla_stable_softmax(self): | |
large_penalty = -1e9 | |
n_tokens = 10 | |
batch_size = 8 | |
def masked_softmax(x, boolean_mask): | |
numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty | |
masked_x = x + numerical_mask | |
return stable_softmax(masked_x) | |
xla_masked_softmax = tf.function(masked_softmax, jit_compile=True) | |
xla_stable_softmax = tf.function(stable_softmax, jit_compile=True) | |
x = tf.random.normal((batch_size, n_tokens)) | |
# Same outcome regardless of the boolean mask here | |
masked_tokens = random.randint(0, n_tokens) | |
boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32) | |
# We can randomly mask a random numerical input OUTSIDE XLA | |
numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty | |
masked_x = x + numerical_mask | |
xla_out = xla_stable_softmax(masked_x) | |
out = stable_softmax(masked_x) | |
assert tf.experimental.numpy.allclose(xla_out, out) | |
# The stable softmax has the same output as the original softmax | |
unstable_out = tf.nn.softmax(masked_x) | |
assert tf.experimental.numpy.allclose(unstable_out, out) | |
# We can randomly mask a random numerical input INSIDE XLA | |
xla_out = xla_masked_softmax(x, boolean_mask) | |
out = masked_softmax(x, boolean_mask) | |
assert tf.experimental.numpy.allclose(xla_out, out) | |
def test_checkpoint_sharding_from_hub(self): | |
model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") | |
# the model above is the same as the model below, just a sharded version. | |
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
for p1, p2 in zip(model.weights, ref_model.weights): | |
assert np.allclose(p1.numpy(), p2.numpy()) | |
def test_sharded_checkpoint_with_prefix(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b") | |
sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b") | |
for p1, p2 in zip(model.weights, sharded_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
self.assertTrue(p1.name.startswith("a/b/")) | |
self.assertTrue(p2.name.startswith("a/b/")) | |
def test_sharded_checkpoint_transfer(self): | |
# If this doesn't throw an error then the test passes | |
TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded") | |
def test_checkpoint_sharding_local_from_pt(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
_ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded") | |
model = TFBertModel.from_pretrained(tmp_dir, from_pt=True) | |
# the model above is the same as the model below, just a sharded pytorch version. | |
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
for p1, p2 in zip(model.weights, ref_model.weights): | |
assert np.allclose(p1.numpy(), p2.numpy()) | |
def test_checkpoint_loading_with_prefix_from_pt(self): | |
model = TFBertModel.from_pretrained( | |
"hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b" | |
) | |
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) | |
for p1, p2 in zip(model.weights, ref_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
self.assertTrue(p1.name.startswith("a/b/")) | |
def test_checkpoint_sharding_hub_from_pt(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True) | |
# the model above is the same as the model below, just a sharded pytorch version. | |
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
for p1, p2 in zip(model.weights, ref_model.weights): | |
assert np.allclose(p1.numpy(), p2.numpy()) | |
def test_shard_checkpoint(self): | |
# This is the model we will use, total size 340,000 bytes. | |
model = tf.keras.Sequential( | |
[ | |
tf.keras.layers.Dense(200, use_bias=False), # size 80,000 | |
tf.keras.layers.Dense(200, use_bias=False), # size 160,000 | |
tf.keras.layers.Dense(100, use_bias=False), # size 80,000 | |
tf.keras.layers.Dense(50, use_bias=False), # size 20,000 | |
] | |
) | |
inputs = tf.zeros((1, 100), dtype=tf.float32) | |
model(inputs) | |
weights = model.weights | |
weights_dict = {w.name: w for w in weights} | |
with self.subTest("No shard when max size is bigger than model size"): | |
shards, index = tf_shard_checkpoint(weights) | |
self.assertIsNone(index) | |
self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights}) | |
with self.subTest("Test sharding, no weights bigger than max size"): | |
shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB") | |
# Split is first two layers then last two. | |
self.assertDictEqual( | |
index, | |
{ | |
"metadata": {"total_size": 340000}, | |
"weight_map": { | |
"dense/kernel:0": "tf_model-00001-of-00002.h5", | |
"dense_1/kernel:0": "tf_model-00001-of-00002.h5", | |
"dense_2/kernel:0": "tf_model-00002-of-00002.h5", | |
"dense_3/kernel:0": "tf_model-00002-of-00002.h5", | |
}, | |
}, | |
) | |
shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]] | |
shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] | |
self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2}) | |
with self.subTest("Test sharding with weights bigger than max size"): | |
shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB") | |
# Split is first layer, second layer then last 2. | |
self.assertDictEqual( | |
index, | |
{ | |
"metadata": {"total_size": 340000}, | |
"weight_map": { | |
"dense/kernel:0": "tf_model-00001-of-00003.h5", | |
"dense_1/kernel:0": "tf_model-00002-of-00003.h5", | |
"dense_2/kernel:0": "tf_model-00003-of-00003.h5", | |
"dense_3/kernel:0": "tf_model-00003-of-00003.h5", | |
}, | |
}, | |
) | |
shard1 = [weights_dict["dense/kernel:0"]] | |
shard2 = [weights_dict["dense_1/kernel:0"]] | |
shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] | |
self.assertDictEqual( | |
shards, | |
{ | |
"tf_model-00001-of-00003.h5": shard1, | |
"tf_model-00002-of-00003.h5": shard2, | |
"tf_model-00003-of-00003.h5": shard3, | |
}, | |
) | |
def test_special_layer_name_sharding(self): | |
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) | |
model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: | |
model.save_pretrained(tmp_dir, max_shard_size=max_size) | |
ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever) | |
for p1, p2 in zip(model.weights, ref_model.weights): | |
assert np.allclose(p1.numpy(), p2.numpy()) | |
def test_checkpoint_sharding_local(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# We use the same folder for various sizes to make sure a new save erases the old checkpoint. | |
for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: | |
model.save_pretrained(tmp_dir, max_shard_size=max_size) | |
# Get each shard file and its size | |
shard_to_size = {} | |
for shard in os.listdir(tmp_dir): | |
if shard.endswith(".h5"): | |
shard_file = os.path.join(tmp_dir, shard) | |
shard_to_size[shard_file] = os.path.getsize(shard_file) | |
index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME) | |
# Check there is an index but no regular weight file | |
self.assertTrue(os.path.isfile(index_file)) | |
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) | |
# Check a file is bigger than max_size only when it has a single weight | |
for shard_file, size in shard_to_size.items(): | |
if max_size.endswith("kiB"): | |
max_size_int = int(max_size[:-3]) * 2**10 | |
else: | |
max_size_int = int(max_size[:-2]) * 10**3 | |
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than | |
# the size asked for (since we count parameters) | |
if size >= max_size_int + 50000: | |
with h5py.File(shard_file, "r") as state_file: | |
self.assertEqual(len(state_file), 1) | |
# Check the index and the shard files found match | |
with open(index_file, "r", encoding="utf-8") as f: | |
index = json.loads(f.read()) | |
all_shards = set(index["weight_map"].values()) | |
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")} | |
self.assertSetEqual(all_shards, shards_found) | |
# Finally, check the model can be reloaded | |
new_model = TFBertModel.from_pretrained(tmp_dir) | |
model.build() | |
new_model.build() | |
for p1, p2 in zip(model.weights, new_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
def test_save_pretrained_signatures(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# Short custom TF signature function. | |
# `input_signature` is specific to BERT. | |
def serving_fn(input): | |
return model(input) | |
# Using default signature (default behavior) overrides 'serving_default' | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, saved_model=True, signatures=None) | |
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1") | |
self.assertTrue("serving_default" in list(model_loaded.signatures.keys())) | |
# Providing custom signature function | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn}) | |
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1") | |
self.assertTrue("custom_signature" in list(model_loaded.signatures.keys())) | |
# Providing multiple custom signature function | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained( | |
tmp_dir, | |
saved_model=True, | |
signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn}, | |
) | |
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1") | |
self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys())) | |
self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys())) | |
def test_safetensors_save_and_load(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, safe_serialization=True) | |
# No tf_model.h5 file, only a model.safetensors | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) | |
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) | |
new_model = TFBertModel.from_pretrained(tmp_dir) | |
# Check models are equal | |
for p1, p2 in zip(model.weights, new_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
def test_safetensors_save_and_load_pt_to_tf(self): | |
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
pt_model.save_pretrained(tmp_dir, safe_serialization=True) | |
# Check we have a model.safetensors file | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) | |
new_model = TFBertModel.from_pretrained(tmp_dir) | |
# Check models are equal | |
for p1, p2 in zip(model.weights, new_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
def test_safetensors_load_from_hub(self): | |
tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# Can load from the TF-formatted checkpoint | |
safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf") | |
# Check models are equal | |
for p1, p2 in zip(safetensors_model.weights, tf_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
# Can load from the PyTorch-formatted checkpoint | |
safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors") | |
# Check models are equal | |
for p1, p2 in zip(safetensors_model.weights, tf_model.weights): | |
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) | |
class TFModelPushToHubTester(unittest.TestCase): | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-model-tf") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="test-model-tf-callback") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
config = BertConfig( | |
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
) | |
model = TFBertModel(config) | |
# Make sure model is properly initialized | |
model.build() | |
logging.set_verbosity_info() | |
logger = logging.get_logger("transformers.utils.hub") | |
with CaptureLogger(logger) as cl: | |
model.push_to_hub("test-model-tf", use_auth_token=self._token) | |
logging.set_verbosity_warning() | |
# Check the model card was created and uploaded. | |
self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out) | |
new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf") | |
models_equal = True | |
for p1, p2 in zip(model.weights, new_model.weights): | |
if not tf.math.reduce_all(p1 == p2): | |
models_equal = False | |
break | |
self.assertTrue(models_equal) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="test-model-tf") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, use_auth_token=self._token) | |
new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf") | |
models_equal = True | |
for p1, p2 in zip(model.weights, new_model.weights): | |
if not tf.math.reduce_all(p1 == p2): | |
models_equal = False | |
break | |
self.assertTrue(models_equal) | |
def test_push_to_hub_callback(self): | |
config = BertConfig( | |
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
) | |
model = TFBertForMaskedLM(config) | |
model.compile() | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
push_to_hub_callback = PushToHubCallback( | |
output_dir=tmp_dir, | |
hub_model_id="test-model-tf-callback", | |
hub_token=self._token, | |
) | |
model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback]) | |
new_model = TFBertForMaskedLM.from_pretrained(f"{USER}/test-model-tf-callback") | |
models_equal = True | |
for p1, p2 in zip(model.weights, new_model.weights): | |
if not tf.math.reduce_all(p1 == p2): | |
models_equal = False | |
break | |
self.assertTrue(models_equal) | |
tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters) | |
tf_push_to_hub_params.pop("base_model_card_args") | |
pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters) | |
pt_push_to_hub_params.pop("deprecated_kwargs") | |
self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params) | |
def test_push_to_hub_in_organization(self): | |
config = BertConfig( | |
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
) | |
model = TFBertModel(config) | |
# Make sure model is properly initialized | |
model.build() | |
model.push_to_hub("valid_org/test-model-tf-org", use_auth_token=self._token) | |
new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org") | |
models_equal = True | |
for p1, p2 in zip(model.weights, new_model.weights): | |
if not tf.math.reduce_all(p1 == p2): | |
models_equal = False | |
break | |
self.assertTrue(models_equal) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained( | |
tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-tf-org" | |
) | |
new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org") | |
models_equal = True | |
for p1, p2 in zip(model.weights, new_model.weights): | |
if not tf.math.reduce_all(p1 == p2): | |
models_equal = False | |
break | |
self.assertTrue(models_equal) | |