voice_clone_v2 / transformers /tests /test_modeling_utils.py
ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
53.2 kB
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import os
import os.path
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from pytest import mark
from requests.exceptions import HTTPError
from transformers import (
AutoConfig,
AutoModel,
PretrainedConfig,
is_torch_available,
logging,
)
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
TestCasePlus,
is_staging_test,
require_accelerate,
require_safetensors,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_usr_bin_time,
slow,
)
from transformers.utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from transformers.utils.import_utils import is_torchdynamo_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig # noqa E402
if is_torch_available():
import torch
from test_module.custom_modeling import CustomModel, NoSuperInitModel
from torch import nn
from transformers import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoModelForCausalLM,
AutoTokenizer,
BertConfig,
BertModel,
CLIPTextModel,
PreTrainedModel,
T5Config,
T5ForConditionalGeneration,
)
from transformers.modeling_utils import shard_checkpoint
# Fake pretrained models for tests
class BaseModel(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
class BaseModelWithTiedWeights(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
def tie_weights(self):
self.linear_2.weight = self.linear.weight
class ModelWithHead(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
# linear is a common name between Base and Head on purpose.
self.linear = nn.Linear(5, 5)
self.linear2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear2(self.linear(self.base(x)))
class ModelWithHeadAndTiedWeights(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
self.decoder = nn.Linear(5, 5)
def forward(self, x):
return self.decoder(self.base(x))
def tie_weights(self):
self.decoder.weight = self.base.linear.weight
TINY_T5 = "patrickvonplaten/t5-tiny-random"
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
def check_models_equal(model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
if model1_p.data.ne(model2_p.data).sum() > 0:
models_are_equal = False
return models_are_equal
@require_torch
class ModelUtilsTest(TestCasePlus):
@slow
def test_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = BertConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, PretrainedConfig)
model = BertModel.from_pretrained(model_name)
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, PreTrainedModel)
self.assertEqual(len(loading_info["missing_keys"]), 0)
self.assertEqual(len(loading_info["unexpected_keys"]), 8)
self.assertEqual(len(loading_info["mismatched_keys"]), 0)
self.assertEqual(len(loading_info["error_msgs"]), 0)
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
# Not sure this is the intended behavior. TODO fix Lysandre & Thom
config.name_or_path = model_name
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(model.config, config)
def test_model_from_pretrained_subfolder(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder))
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_subfolder_sharded(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_hub_subfolder(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_hub_subfolder_sharded(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_with_different_pretrained_model_name(self):
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertIsNotNone(model)
logger = logging.get_logger("transformers.configuration_utils")
with CaptureLogger(logger) as cl:
BertModel.from_pretrained(TINY_T5)
self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
def test_model_from_config_torch_dtype(self):
# test that the model can be instantiated with dtype of user's choice - as long as it's a
# float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
# model from the config object.
config = T5Config.from_pretrained(TINY_T5)
model = AutoModel.from_config(config)
# XXX: isn't supported
# model = T5ForConditionalGeneration.from_config(config)
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_config(config, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
with self.assertRaises(ValueError):
model = AutoModel.from_config(config, torch_dtype=torch.int64)
def test_model_from_pretrained_torch_dtype(self):
# test that the model can be instantiated with dtype of either
# 1. explicit from_pretrained's torch_dtype argument
# 2. via autodiscovery by looking at model weights (torch_dtype="auto")
# so if a model.half() was saved, we want it to be instantiated as such.
#
# test an explicit model class, but also AutoModel separately as the latter goes through a different code path
model_path = self.get_auto_remove_tmp_dir()
# baseline - we know TINY_T5 is fp32 model
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertEqual(model.dtype, torch.float32)
def remove_torch_dtype(model_path):
file = f"{model_path}/config.json"
with open(file, "r", encoding="utf-8") as f:
s = json.load(f)
s.pop("torch_dtype")
with open(file, "w", encoding="utf-8") as f:
json.dump(s, f)
# test the default fp32 save_pretrained => from_pretrained cycle
model.save_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
self.assertEqual(model.dtype, torch.float32)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# 2. test torch_dtype="auto" via auto-derivation
# now remove the torch_dtype entry from config.json and try "auto" again which should
# perform auto-derivation from weights
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# test forced loading in fp16 (even though the weights are in fp32)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with auto-detection
model = model.half()
model.save_pretrained(model_path)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.config.torch_dtype, torch.float16)
self.assertEqual(model.dtype, torch.float16)
# tests `config.torch_dtype` saving
with open(f"{model_path}/config.json") as f:
config_dict = json.load(f)
self.assertEqual(config_dict["torch_dtype"], "float16")
# 2. test torch_dtype="auto" via auto-derivation
# now same with using config info
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# 3. now retest that AutoModel behaves the same wrt torch_dtype="auto" as T5ForConditionalGeneration
model = AutoModel.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with the explicit fp16
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test AutoModel separately as it goes through a different path
# test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
# test that the config object didn't get polluted with torch_dtype="auto"
# there was a bug that after this call we ended up with config.torch_dtype=="auto"
self.assertNotEqual(model.config.torch_dtype, "auto")
# now test the outcome
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test model whose first param is not of a floating type, but int
model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
def test_no_super_init_config_and_model(self):
config = NoSuperInitConfig(attribute=32)
model = NoSuperInitModel(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = NoSuperInitModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_shard_checkpoint(self):
# This is the model we will use, total size 340,000 bytes.
model = torch.nn.Sequential(
torch.nn.Linear(100, 200, bias=False), # size 80,000
torch.nn.Linear(200, 200, bias=False), # size 160,000
torch.nn.Linear(200, 100, bias=False), # size 80,000
torch.nn.Linear(100, 50, bias=False), # size 20,000
)
state_dict = model.state_dict()
with self.subTest("No shard when max size is bigger than model size"):
shards, index = shard_checkpoint(state_dict)
self.assertIsNone(index)
self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})
with self.subTest("Test sharding, no weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
# Split is first two layers then last two.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00002.bin",
"1.weight": "pytorch_model-00001-of-00002.bin",
"2.weight": "pytorch_model-00002-of-00002.bin",
"3.weight": "pytorch_model-00002-of-00002.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
)
with self.subTest("Test sharding with weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
# Split is first layer, second layer then last 2.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00003.bin",
"1.weight": "pytorch_model-00002-of-00003.bin",
"2.weight": "pytorch_model-00003-of-00003.bin",
"3.weight": "pytorch_model-00003-of-00003.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"]}
shard2 = {"1.weight": state_dict["1.weight"]}
shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards,
{
"pytorch_model-00001-of-00003.bin": shard1,
"pytorch_model-00002-of-00003.bin": shard2,
"pytorch_model-00003-of-00003.bin": shard3,
},
)
def test_checkpoint_sharding_local(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
# We use the same folder for various sizes to make sure a new save erases the old checkpoint.
for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
model.save_pretrained(tmp_dir, max_shard_size=max_size)
# Get each shard file and its size
shard_to_size = {}
for shard in os.listdir(tmp_dir):
if shard.endswith(".bin"):
shard_file = os.path.join(tmp_dir, shard)
shard_to_size[shard_file] = os.path.getsize(shard_file)
index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
# Check there is an index but no regular weight file
self.assertTrue(os.path.isfile(index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
# Check a file is bigger than max_size only when it has a single weight
for shard_file, size in shard_to_size.items():
if max_size.endswith("kiB"):
max_size_int = int(max_size[:-3]) * 2**10
else:
max_size_int = int(max_size[:-2]) * 10**3
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
# the size asked for (since we count parameters)
if size >= max_size_int + 50000:
state_dict = torch.load(shard_file)
self.assertEqual(len(state_dict), 1)
# Check the index and the shard files found match
with open(index_file, "r", encoding="utf-8") as f:
index = json.loads(f.read())
all_shards = set(index["weight_map"].values())
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
self.assertSetEqual(all_shards, shards_found)
# Finally, check the model can be reloaded
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_sharding_from_hub(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# the model above is the same as the model below, just a sharded version.
ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2")
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local_sharded(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB")
weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["bin"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_sharded_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)
weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["safetensors"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_hub(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_hub_sharded(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_sharded_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_save_load(self):
with tempfile.TemporaryDirectory() as tmp_dir:
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
model.save_pretrained(tmp_dir, variant="v2")
# saving will create a variant checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
model.save_pretrained(tmp_dir)
# saving shouldn't delete variant checkpoints
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
# there should be a normal checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertIsNotNone(model)
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_functional(self):
# test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
# sharded models
mnames = [
"hf-internal-testing/tiny-random-bert-sharded",
"hf-internal-testing/tiny-random-bert",
]
for mname in mnames:
_ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)
@require_usr_bin_time
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_measured(self):
# test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default
mname = "bert-base-cased"
preamble = "from transformers import AutoModel"
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_normal=}")
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_low_mem=}")
diff_bytes = max_rss_normal - max_rss_low_mem
diff_percent = diff_bytes / max_rss_low_mem
# print(f"{diff_bytes=}, {diff_percent=}")
# ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
# measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
# it's at least 15% less cpu memory consumed
self.assertGreater(
diff_percent,
0.15,
"should use less CPU memory for low_cpu_mem_usage=True, "
f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
)
# if you want to compare things manually, let's first look at the size of the model in bytes
# model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
# total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
# total_bytes = total_numel * 4 # 420MB
# Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
# The easiest way to test this is to switch the model and torch.load to do all the work on
# gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
# functionality to load models directly on gpu, this test can be rewritten to use torch's
# cuda memory tracking and then we should be able to do a much more precise test.
@require_accelerate
@mark.accelerate_tests
@require_torch_multi_gpu
@slow
def test_model_parallelism_gpt2(self):
device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
for i in range(12):
device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1
model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
inputs = tokenizer("Hello, my name is", return_tensors="pt")
output = model.generate(inputs["input_ids"].to(0))
text_output = tokenizer.decode(output[0].tolist())
self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")
@require_accelerate
@mark.accelerate_tests
@require_torch_gpu
def test_from_pretrained_disk_offload_task_model(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
device_map = {
"transformer.wte": 0,
"transformer.wpe": 0,
"transformer.h.0": "cpu",
"transformer.h.1": "cpu",
"transformer.h.2": "cpu",
"transformer.h.3": "disk",
"transformer.h.4": "disk",
"transformer.ln_f": 0,
"lm_head": 0,
}
with tempfile.TemporaryDirectory() as tmp_dir:
inputs = torch.tensor([[1, 2, 3]]).to(0)
model.save_pretrained(tmp_dir)
new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
outputs1 = new_model.to(0)(inputs)
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir, device_map=device_map, offload_folder=offload_folder
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
# With state dict temp offload
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=True,
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_load_from_one_file(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
)
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(tmp_file, config=config)
finally:
os.remove(tmp_file)
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
)
@require_safetensors
def test_use_safetensors(self):
# test nice error message if no safetensor files available
with self.assertRaises(OSError) as env_error:
AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True)
self.assertTrue(
"model.safetensors or model.safetensors.index.json and thus cannot be loaded with `safetensors`"
in str(env_error.exception)
)
# test that error if only safetensors is available
with self.assertRaises(OSError) as env_error:
BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False)
self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception))
# test that only safetensors if both available and use_safetensors=False
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=False,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files))
# test that no safetensors if both available and use_safetensors=True
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=True,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files))
@require_safetensors
def test_safetensors_save_and_load(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
# No pytorch_model.bin file, only a model.safetensors
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_save_and_load_sharded(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
# No pytorch_model.bin index file, only a model.safetensors index
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
# No regular weights file
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub_sharded(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_base_model_to_head_model_load(self):
base_model = BaseModel(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
base_model.save_pretrained(tmp_dir)
# Can load a base model in a model with head
model = ModelWithHead.from_pretrained(tmp_dir)
for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
# It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
base_state_dict = base_model.state_dict()
head_state_dict = model.state_dict()
base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))
with self.assertRaisesRegex(
ValueError, "The state dictionary of the model you are trying to load is corrupted."
):
_ = ModelWithHead.from_pretrained(tmp_dir)
def test_tied_weights_reload(self):
# Base
model = BaseModelWithTiedWeights(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = BaseModelWithTiedWeights.from_pretrained(tmp_dir)
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
state_dict = model.state_dict()
# Remove tied weight from state_dict -> model should load with no complain of missing keys
del state_dict["linear_2.weight"]
torch.save(state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))
new_model, load_info = BaseModelWithTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertListEqual(load_info["missing_keys"], [])
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
# With head
model.save_pretrained(tmp_dir)
new_model, load_info = ModelWithHeadAndTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIs(new_model.base.linear.weight, new_model.decoder.weight)
# Should only complain about the missing bias
self.assertListEqual(load_info["missing_keys"], ["decoder.bias"])
def test_unexpected_keys_warnings(self):
model = ModelWithHead(PretrainedConfig())
logger = logging.get_logger("transformers.modeling_utils")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# Loading the model with a new class, we don't get a warning for unexpected weights, just an info
with CaptureLogger(logger) as cl:
_, loading_info = BaseModel.from_pretrained(tmp_dir, output_loading_info=True)
self.assertNotIn("were not used when initializing ModelWithHead", cl.out)
self.assertEqual(
set(loading_info["unexpected_keys"]),
{"linear.weight", "linear.bias", "linear2.weight", "linear2.bias"},
)
# Loading the model with the same class, we do get a warning for unexpected weights
state_dict = model.state_dict()
state_dict["added_key"] = state_dict["linear.weight"]
torch.save(state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))
with CaptureLogger(logger) as cl:
_, loading_info = ModelWithHead.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIn("were not used when initializing ModelWithHead: ['added_key']", cl.out)
self.assertEqual(loading_info["unexpected_keys"], ["added_key"])
def test_warn_if_padding_and_no_attention_mask(self):
logger = logging.get_logger("transformers.modeling_utils")
with self.subTest("Ensure no warnings when pad_token_id is None."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config_no_pad_token = PretrainedConfig()
config_no_pad_token.pad_token_id = None
model = ModelWithHead(config_no_pad_token)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure no warnings when there is an attention_mask."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure no warnings when there are no pad_token_ids in the input_ids."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[1, 345, 232, 328, 740, 140, 1695, 69, 6078, 2341, 25]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertNotIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure a warning is shown when the input_ids start with a pad_token_id."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure a warning is shown when the input_ids end with a pad_token_id."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[432, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)
with self.subTest("Ensure that the warning is shown at most once."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertEqual(cl.out.count("We strongly recommend passing in an `attention_mask`"), 1)
with self.subTest("Ensure a different warning is shown when the pad_token_id is equal to the bos_token_id."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config = PretrainedConfig()
config.pad_token_id = 0
config.bos_token_id = config.pad_token_id
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
self.assertIn("You may ignore this warning if your `pad_token_id`", cl.out)
if not is_torchdynamo_available():
return
with self.subTest("Ensure that the warning code is skipped when compiling with torchdynamo."):
logger.warning_once.cache_clear()
from torch._dynamo import config, testing
config = PretrainedConfig()
config.pad_token_id = 0
model = ModelWithHead(config)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 432, 5232]])
def f(input_ids):
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)
compile_counter = testing.CompileCounter()
opt_fn = torch.compile(f, dynamic=True, backend=compile_counter)
opt_fn(input_ids)
self.assertEqual(compile_counter.frame_count, 0)
@require_torch_gpu
@slow
def test_pretrained_low_mem_new_config(self):
# Checking for 1 model(the same one which was described in the issue) .
model_ids = ["gpt2"]
for model_id in model_ids:
model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
model_config.n_layer = 48
model_config.n_head = 25
model_config.n_embd = 1600
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_id,
config=model_config,
ignore_mismatched_sizes=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)
self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)
def test_generation_config_is_loaded_with_model(self):
# Note: `joaogante/tiny-random-gpt2-with-generation-config` has a `generation_config.json` containing a dummy
# `transformers_version` field set to `foo`. If loading the file fails, this test also fails.
# 1. Load without further parameters
model = AutoModelForCausalLM.from_pretrained("joaogante/tiny-random-gpt2-with-generation-config")
self.assertEqual(model.generation_config.transformers_version, "foo")
# 2. Load with `device_map`
model = AutoModelForCausalLM.from_pretrained(
"joaogante/tiny-random-gpt2-with-generation-config", device_map="auto"
)
self.assertEqual(model.generation_config.transformers_version, "foo")
@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-model")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-model")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertModel(config)
model.push_to_hub("test-model", use_auth_token=self._token)
new_model = BertModel.from_pretrained(f"{USER}/test-model")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=self._token, repo_id="test-model")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
new_model = BertModel.from_pretrained(f"{USER}/test-model")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertModel(config)
model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)
new_model = BertModel.from_pretrained("valid_org/test-model-org")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-model-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
)
new_model = BertModel.from_pretrained("valid_org/test-model-org")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_push_to_hub_dynamic_model(self):
CustomConfig.register_for_auto_class()
CustomModel.register_for_auto_class()
config = CustomConfig(hidden_size=32)
model = CustomModel(config)
model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
# checks
self.assertDictEqual(
config.auto_map,
{"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
)
new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
# Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
self.assertEqual(new_model.__class__.__name__, "CustomModel")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
new_model = AutoModel.from_config(config, trust_remote_code=True)
self.assertEqual(new_model.__class__.__name__, "CustomModel")