Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import concurrent.futures | |
import json | |
import os | |
import shutil | |
import tempfile | |
import unittest | |
from transformers import AutoTokenizer, PreTrainedTokenizerFast | |
from transformers.testing_utils import require_tokenizers | |
from ..test_tokenization_common import TokenizerTesterMixin | |
class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase): | |
rust_tokenizer_class = PreTrainedTokenizerFast | |
test_slow_tokenizer = False | |
test_rust_tokenizer = True | |
from_pretrained_vocab_key = "tokenizer_file" | |
def setUp(self): | |
self.test_rust_tokenizer = False # because we don't have pretrained_vocab_files_map | |
super().setUp() | |
self.test_rust_tokenizer = True | |
model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"] | |
self.bytelevel_bpe_model_name = "SaulLu/dummy-tokenizer-bytelevel-bpe" | |
# Inclusion of 2 tokenizers to test different types of models (Unigram and WordLevel for the moment) | |
self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths] | |
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0]) | |
tokenizer.save_pretrained(self.tmpdirname) | |
def test_tokenizer_mismatch_warning(self): | |
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any | |
# model | |
pass | |
def test_pretrained_model_lists(self): | |
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any | |
# model | |
pass | |
def test_prepare_for_model(self): | |
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any | |
# model | |
pass | |
def test_rust_tokenizer_signature(self): | |
# PreTrainedTokenizerFast doesn't have tokenizer_file in its signature | |
pass | |
def test_training_new_tokenizer(self): | |
tmpdirname_orig = self.tmpdirname | |
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel. | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
try: | |
self.tmpdirname = tempfile.mkdtemp() | |
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
tokenizer.save_pretrained(self.tmpdirname) | |
super().test_training_new_tokenizer() | |
finally: | |
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer | |
# is restored | |
shutil.rmtree(self.tmpdirname) | |
self.tmpdirname = tmpdirname_orig | |
def test_training_new_tokenizer_with_special_tokens_change(self): | |
tmpdirname_orig = self.tmpdirname | |
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel. | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
try: | |
self.tmpdirname = tempfile.mkdtemp() | |
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
tokenizer.save_pretrained(self.tmpdirname) | |
super().test_training_new_tokenizer_with_special_tokens_change() | |
finally: | |
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer | |
# is restored | |
shutil.rmtree(self.tmpdirname) | |
self.tmpdirname = tmpdirname_orig | |
def test_training_new_tokenizer_with_bytelevel(self): | |
tokenizer = self.rust_tokenizer_class.from_pretrained(self.bytelevel_bpe_model_name) | |
toy_text_iterator = ("a" for _ in range(1000)) | |
new_tokenizer = tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50) | |
encoding_ids = new_tokenizer.encode("a🤗") | |
self.assertEqual(encoding_ids, [64, 172, 253, 97, 245]) | |
def test_init_from_tokenizers_model(self): | |
from tokenizers import Tokenizer | |
sentences = ["Hello, y'all!", "How are you 😁 ? There should not be any issue right?"] | |
tokenizer = Tokenizer.from_pretrained("t5-base") | |
# Enable padding | |
tokenizer.enable_padding(pad_id=0, pad_token="<pad>", length=512, pad_to_multiple_of=8) | |
self.assertEqual( | |
tokenizer.padding, | |
{ | |
"length": 512, | |
"pad_to_multiple_of": 8, | |
"pad_id": 0, | |
"pad_token": "<pad>", | |
"pad_type_id": 0, | |
"direction": "right", | |
}, | |
) | |
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) | |
tmpdirname = tempfile.mkdtemp() | |
fast_tokenizer.save_pretrained(tmpdirname) | |
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname) | |
for tok in [fast_tokenizer, fast_from_saved]: | |
self.assertEqual(tok.pad_token_id, 0) | |
self.assertEqual(tok.padding_side, "right") | |
self.assertEqual(tok.pad_token, "<pad>") | |
self.assertEqual(tok.init_kwargs["max_length"], 512) | |
self.assertEqual(tok.init_kwargs["pad_to_multiple_of"], 8) | |
# fmt: off | |
self.assertEqual(tok(sentences, padding = True), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1, 0, 0, 0, 0,0, 0, 0, 0],[ 571, 33, 25, 3, 2, 3, 58, 290, 225, 59, 36, 136, 962, 269, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}) | |
# fmt: on | |
tokenizer.enable_truncation(8, stride=0, strategy="longest_first", direction="right") | |
self.assertEqual( | |
tokenizer.truncation, {"max_length": 8, "stride": 0, "strategy": "longest_first", "direction": "right"} | |
) | |
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) | |
tmpdirname = tempfile.mkdtemp() | |
fast_tokenizer.save_pretrained(tmpdirname) | |
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname) | |
for tok in [fast_tokenizer, fast_from_saved]: | |
self.assertEqual(tok.truncation_side, "right") | |
self.assertEqual(tok.init_kwargs["truncation_strategy"], "longest_first") | |
self.assertEqual(tok.init_kwargs["max_length"], 8) | |
self.assertEqual(tok.init_kwargs["stride"], 0) | |
# NOTE even if the model has a default max_length, it is not used... | |
# thus tok(sentences, truncation = True) does nothing and does not warn either | |
# fmt: off | |
self.assertEqual(tok(sentences, truncation = True, max_length = 8), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1],[ 571, 33, 25, 3, 2, 3, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1]]}) | |
# fmt: on | |
class TokenizerVersioningTest(unittest.TestCase): | |
def test_local_versioning(self): | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
json_tokenizer = json.loads(tokenizer._tokenizer.to_str()) | |
json_tokenizer["model"]["vocab"]["huggingface"] = len(tokenizer) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# Hack to save this in the tokenizer_config.json | |
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.4.0.0.json"] | |
tokenizer.save_pretrained(tmp_dir) | |
json.dump(json_tokenizer, open(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), "w")) | |
# This should pick the new tokenizer file as the version of Transformers is > 4.0.0 | |
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) | |
self.assertEqual(len(new_tokenizer), len(tokenizer) + 1) | |
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str()) | |
self.assertIn("huggingface", json_tokenizer["model"]["vocab"]) | |
# Will need to be adjusted if we reach v42 and this test is still here. | |
# Should pick the old tokenizer file as the version of Transformers is < 4.0.0 | |
shutil.move(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), os.path.join(tmp_dir, "tokenizer.42.0.0.json")) | |
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.42.0.0.json"] | |
tokenizer.save_pretrained(tmp_dir) | |
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) | |
self.assertEqual(len(new_tokenizer), len(tokenizer)) | |
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str()) | |
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"]) | |
def test_repo_versioning(self): | |
# This repo has two tokenizer files, one for v4.0.0 and above with an added token, one for versions lower. | |
repo = "hf-internal-testing/test-two-tokenizers" | |
# This should pick the new tokenizer file as the version of Transformers is > 4.0.0 | |
tokenizer = AutoTokenizer.from_pretrained(repo) | |
self.assertEqual(len(tokenizer), 28997) | |
json_tokenizer = json.loads(tokenizer._tokenizer.to_str()) | |
self.assertIn("huggingface", json_tokenizer["model"]["vocab"]) | |
# Testing an older version by monkey-patching the version in the module it's used. | |
import transformers as old_transformers | |
old_transformers.tokenization_utils_base.__version__ = "3.0.0" | |
old_tokenizer = old_transformers.models.auto.AutoTokenizer.from_pretrained(repo) | |
self.assertEqual(len(old_tokenizer), 28996) | |
json_tokenizer = json.loads(old_tokenizer._tokenizer.to_str()) | |
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"]) | |
class ReduceMutableBorrowTests(unittest.TestCase): | |
def test_async_share_tokenizer(self): | |
# See https://github.com/huggingface/transformers/pull/12550 | |
# and https://github.com/huggingface/tokenizers/issues/537 | |
tokenizer = PreTrainedTokenizerFast.from_pretrained("robot-test/dummy-tokenizer-wordlevel") | |
text = "The Matrix is a 1999 science fiction action film." | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.fetch, tokenizer, text) for i in range(10)] | |
return_value = [future.result() for future in futures] | |
self.assertEqual(return_value, [[1, 10, 0, 8, 0, 18, 0, 0, 0, 2] for i in range(10)]) | |
def fetch(self, tokenizer, text): | |
return tokenizer.encode(text, truncation="longest_first", padding="longest") | |