import os import unittest import torch from tests import get_tests_input_path from TTS.vc.configs.freevc_config import FreeVCConfig from TTS.vc.models.freevc import FreeVC # pylint: disable=unused-variable # pylint: disable=no-self-use torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = FreeVCConfig() WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") BATCH_SIZE = 3 def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) class TestFreeVC(unittest.TestCase): def _create_inputs(self, config, batch_size=2): input_dummy = torch.rand(batch_size, 30 * config.audio["hop_length"]).to(device) input_lengths = torch.randint(100, 30 * config.audio["hop_length"], (batch_size,)).long().to(device) input_lengths[-1] = 30 * config.audio["hop_length"] spec = torch.rand(batch_size, 30, config.audio["filter_length"] // 2 + 1).to(device) mel = torch.rand(batch_size, 30, config.audio["n_mel_channels"]).to(device) spec_lengths = torch.randint(20, 30, (batch_size,)).long().to(device) spec_lengths[-1] = spec.size(2) waveform = torch.rand(batch_size, spec.size(2) * config.audio["hop_length"]).to(device) return input_dummy, input_lengths, mel, spec, spec_lengths, waveform @staticmethod def _create_inputs_inference(): source_wav = torch.rand(16000) target_wav = torch.rand(16000) return source_wav, target_wav @staticmethod def _check_parameter_changes(model, model_ref): count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 def test_methods(self): config = FreeVCConfig() model = FreeVC(config).to(device) model.load_pretrained_speaker_encoder() model.init_multispeaker(config) wavlm_feats = model.extract_wavlm_features(torch.rand(1, 16000)) assert wavlm_feats.shape == (1, 1024, 49), wavlm_feats.shape def test_load_audio(self): config = FreeVCConfig() model = FreeVC(config).to(device) wav = model.load_audio(WAV_FILE) wav2 = model.load_audio(wav) assert all(torch.isclose(wav, wav2)) def _test_forward(self, batch_size): # create model config = FreeVCConfig() model = FreeVC(config).to(device) model.train() print(" > Num parameters for FreeVC model:%s" % (count_parameters(model))) _, _, mel, spec, spec_lengths, waveform = self._create_inputs(config, batch_size) wavlm_vec = model.extract_wavlm_features(waveform) wavlm_vec_lengths = torch.ones(batch_size, dtype=torch.long) y = model.forward(wavlm_vec, spec, None, mel, spec_lengths, wavlm_vec_lengths) # TODO: assert with training implementation def test_forward(self): self._test_forward(1) self._test_forward(3) def _test_inference(self, batch_size): config = FreeVCConfig() model = FreeVC(config).to(device) model.eval() _, _, mel, _, _, waveform = self._create_inputs(config, batch_size) wavlm_vec = model.extract_wavlm_features(waveform) wavlm_vec_lengths = torch.ones(batch_size, dtype=torch.long) output_wav = model.inference(wavlm_vec, None, mel, wavlm_vec_lengths) assert ( output_wav.shape[-1] // config.audio.hop_length == wavlm_vec.shape[-1] ), f"{output_wav.shape[-1] // config.audio.hop_length} != {wavlm_vec.shape}" def test_inference(self): self._test_inference(1) self._test_inference(3) def test_voice_conversion(self): config = FreeVCConfig() model = FreeVC(config).to(device) model.eval() source_wav, target_wav = self._create_inputs_inference() output_wav = model.voice_conversion(source_wav, target_wav) assert ( output_wav.shape[0] + config.audio.hop_length == source_wav.shape[0] ), f"{output_wav.shape} != {source_wav.shape}" def test_train_step(self): ... def test_train_eval_log(self): ... def test_test_run(self): ... def test_load_checkpoint(self): ... def test_get_criterion(self): ... def test_init_from_config(self): ...