Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from fastapi.responses import RedirectResponse | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
tokenizer = AutoTokenizer.from_pretrained("mayanklad/faq-canada-immigration-tokenizer") | |
model = AutoModelForCausalLM.from_pretrained("mayanklad/faq-canada-immigration") | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
app = FastAPI(docs_url="/") | |
# Define a function to handle the GET request at `/generate` | |
# The generate() function is defined as a FastAPI route that takes a | |
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response | |
# containing the generated text under the key "output" | |
def generate(text: str): | |
""" | |
Using the text-generation pipeline from `transformers`, generate text | |
from the given input text. The model used is `mayanklad/faq-canada-immigration`, which | |
can be found [here](<https://huggingface.co/mayanklad/faq-canada-immigration>). | |
""" | |
# Use the pipeline to generate text from the given input text | |
gen = pipe(text) | |
# Return the generated text in a JSON response | |
return {"output": gen[0]["generated_text"]} | |