Spaces:
Runtime error
Runtime error
File size: 12,050 Bytes
48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 517cbd1 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 48dc89b 73a0ac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import json
import os
import shutil
import subprocess
import sys
import time
import math
import cv2
import requests
from pydub import AudioSegment
import numpy as np
from dotenv import load_dotenv
import gradio as gr
# Load environment variables from .env file
load_dotenv(override=True)
# Read API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
LEMONFOX_API_KEY = os.getenv("LEMONFOX_API_KEY")
narration_api = "openai"
def parse(narration):
data = []
narrations = []
lines = narration.split("\n")
for line in lines:
if line.startswith('Narrator: '):
text = line.replace('Narrator: ', '')
data.append({
"type": "text",
"content": text.strip('"'),
})
narrations.append(text.strip('"'))
elif line.startswith('['):
background = line.strip('[]')
data.append({
"type": "image",
"description": background,
})
return data, narrations
def create(data, output_folder, voice="shimmer"): # Add voice parameter with default value
if not os.path.exists(output_folder):
os.makedirs(output_folder)
n = 0
for element in data:
if element["type"] != "text":
continue
n += 1
output_file = os.path.join(output_folder, f"narration_{n}.mp3")
if narration_api == "openai":
tts_url = 'https://api.openai.com/v1/audio/speech'
headers = {
'Authorization': f'Bearer {OPENAI_API_KEY}',
'Content-Type': 'application/json'
}
payload = {
"model": "tts-1",
"input": element["content"],
"voice": voice # Use the selected voice here
}
response = requests.post(tts_url, json=payload, headers=headers)
if response.status_code == 200:
with open(output_file, "wb") as f:
f.write(response.content)
else:
print(f"Failed to generate audio for prompt: {element['content']}. Status Code: {response.status_code}")
def generate(prompt, output_file, size="576x1024"):
url = 'https://api.lemonfox.ai/v1/images/generations'
headers = {
'Authorization': LEMONFOX_API_KEY,
'Content-Type': 'application/json'
}
data = {
'prompt': prompt,
'size': size,
'n': 1
}
try:
response = requests.post(url, json=data, headers=headers)
if response.ok:
response_data = response.json()
if 'data' in response_data and len(response_data['data']) > 0:
image_info = response_data['data'][0]
image_url = image_info['url']
image_response = requests.get(image_url)
with open(output_file, 'wb') as f:
f.write(image_response.content)
else:
print(f"No image data found for prompt: {prompt}")
else:
print(f"Failed to generate image for prompt: {prompt}. Status Code: {response.status_code}")
except Exception as e:
print(f"Error occurred while processing prompt: {prompt}")
print(str(e))
def create_from_data(data, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_number = 0
for element in data:
if element["type"] != "image":
continue
image_number += 1
image_name = f"image_{image_number}.webp"
generate(element["description"], os.path.join(output_dir, image_name))
def get_audio_duration(audio_file):
return len(AudioSegment.from_file(audio_file))
def resize_image(image, width, height):
aspect_ratio = image.shape[1] / image.shape[0]
if aspect_ratio > (width / height):
new_width = width
new_height = int(width / aspect_ratio)
else:
new_height = height
new_width = int(height * aspect_ratio)
return cv2.resize(image, (new_width, new_height))
def write_text(text, frame, video_writer):
font = cv2.FONT_HERSHEY_SIMPLEX
white_color = (255, 255, 255)
black_color = (0, 0, 0)
thickness = 10
font_scale = 3
border = 5
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x = (frame.shape[1] - text_size[0]) // 2
text_y = (frame.shape[0] + text_size[1]) // 2
org = (text_x, text_y)
frame = cv2.putText(frame, text, org, font, font_scale, black_color, thickness + border * 2, cv2.LINE_AA)
frame = cv2.putText(frame, text, org, font, font_scale, white_color, thickness, cv2.LINE_AA)
video_writer.write(frame)
def add_narration_to_video(narrations, input_video, output_dir, output_file, text_color, text_position):
offset = 50
cap = cv2.VideoCapture(input_video)
temp_video = os.path.join(output_dir, "with_transcript.mp4") # Change file extension to MP4
out = cv2.VideoWriter(temp_video, cv2.VideoWriter_fourcc(*'mp4v'), 30, (int(cap.get(3)), int(cap.get(4))))
full_narration = AudioSegment.empty()
for i, narration in enumerate(narrations):
audio = os.path.join(output_dir, "narrations", f"narration_{i+1}.mp3")
duration = get_audio_duration(audio)
narration_frames = math.floor(duration / 1000 * 30)
full_narration += AudioSegment.from_file(audio)
char_count = len(narration.replace(" ", ""))
ms_per_char = duration / char_count
frames_written = 0
words = narration.split(" ")
for w, word in enumerate(words):
word_ms = len(word) * ms_per_char
if i == 0 and w == 0:
word_ms -= offset
if word_ms < 0:
word_ms = 0
for _ in range(math.floor(word_ms/1000*30)):
ret, frame = cap.read()
if not ret:
break
write_text(word, frame, out)
frames_written += 1
for _ in range(narration_frames - frames_written):
ret, frame = cap.read()
out.write(frame)
while out.isOpened():
ret, frame = cap.read()
if not ret:
break
out.write(frame)
temp_narration = os.path.join(output_dir, "narration.mp3")
full_narration.export(temp_narration, format="mp3")
cap.release()
out.release()
cv2.destroyAllWindows()
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', temp_video,
'-i', temp_narration,
'-map', '0:v',
'-map', '1:a',
'-c:v', 'libx264', # Use H.264 codec
'-c:a', 'aac',
'-strict', 'experimental',
os.path.join(output_dir, output_file)
]
subprocess.run(ffmpeg_command, capture_output=True)
os.remove(temp_video)
os.remove(temp_narration)
def create_video(narrations, output_dir, output_file, text_color, text_position):
width, height = 1080, 1920
frame_rate = 30
fade_time = 1000
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Change codec to MP4V
temp_video = os.path.join(output_dir, "temp_video.mp4") # Change file extension to MP4
out = cv2.VideoWriter(temp_video, fourcc, frame_rate, (width, height))
image_paths = os.listdir(os.path.join(output_dir, "images"))
image_count = len(image_paths)
for i in range(image_count):
image1 = cv2.imread(os.path.join(output_dir, "images", f"image_{i+1}.webp"))
if i+1 < image_count:
image2 = cv2.imread(os.path.join(output_dir, "images", f"image_{i+2}.webp"))
else:
image2 = cv2.imread(os.path.join(output_dir, "images", f"image_1.webp"))
image1 = resize_image(image1, width, height)
image2 = resize_image(image2, width, height)
narration = os.path.join(output_dir, "narrations", f"narration_{i+1}.mp3")
duration = get_audio_duration(narration)
if i > 0:
duration -= fade_time
if i == image_count-1:
duration -= fade_time
for _ in range(math.floor(duration/1000*30)):
vertical_video_frame = np.zeros((height, width, 3), dtype=np.uint8)
vertical_video_frame[:image1.shape[0], :] = image1
out.write(vertical_video_frame)
for alpha in np.linspace(0, 1, math.floor(fade_time/1000*30)):
blended_image = cv2.addWeighted(image1, 1 - alpha, image2, alpha, 0)
vertical_video_frame = np.zeros((height, width, 3), dtype=np.uint8)
vertical_video_frame[:image1.shape[0], :] = blended_image
out.write(vertical_video_frame)
out.release()
cv2.destroyAllWindows()
add_narration_to_video(narrations, temp_video, output_dir, output_file, text_color, text_position)
os.remove(temp_video)
def generate_video(topic, voice="shimmer"):
short_id = str(int(time.time()))
basedir = os.path.join("shorts", short_id)
if not os.path.exists(basedir):
os.makedirs(basedir)
filename = topic.replace("_", " ").replace("/", "_").replace(".", "_")
output_file = f"{filename}.mp4" # Change file extension to MP4
chat_url = 'https://api.openai.com/v1/chat/completions'
headers = {
'Authorization': f'Bearer {OPENAI_API_KEY}',
'Content-Type': 'application/json'
}
payload = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a viral youTube short video creator."
},
{
"role": "user",
"content": f"""Make a 60 second video on: \n\n{topic} and you will need to generate a very short description of images for each of the scenes. They will be used for background AI images. Note that the script will be fed into a text-to-speech engine, so dont use special characters. Respond with a pair of an image prompt in square brackets and a script below it. Both of them should be on their own lines, as follows:
###
[Description of a background image]
Narrator: "Sentence of narration"
###"""
}
]
}
response = requests.post(chat_url, json=payload, headers=headers)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
response_text = response_text.replace("’", "'").replace("`", "'").replace("…", "...").replace("“", '"').replace("”", '"')
with open(os.path.join(basedir, f"response.txt"), "a") as f:
f.write(response_text + "\n")
data, narrations = parse(response_text)
with open(os.path.join(basedir, f"data.json"), "a") as f:
json.dump(data, f, ensure_ascii=False)
f.write("\n")
print(f"Generating narration for: {topic}...")
create(data, os.path.join(basedir, f"narrations"), voice=voice)
print("Generating images...")
create_from_data(data, os.path.join(basedir, f"images"))
print("Generating video...")
create_video(narrations, basedir, output_file, text_color="white", text_position="center")
print("Deleting files and folders...")
os.remove(os.path.join(basedir, "response.txt"))
os.remove(os.path.join(basedir, "data.json"))
shutil.rmtree(os.path.join(basedir, "narrations"))
shutil.rmtree(os.path.join(basedir, "images"))
print(f"DONE! Here's your video: {os.path.join(basedir, output_file)}")
return os.path.join(basedir, output_file)
else:
print(f"Failed to generate script for source material: {topic}. Status Code: {response.status_code}")
return None
iface = gr.Interface(
concurrency_limit=20,
fn=generate_video,
inputs=["text", gr.Dropdown(['alloy', 'shimmer', 'fable', 'onyx', 'nova', 'echo'], label="Select Voice")],
outputs="video",
css=".gradio-container {display: none}"
)
iface.launch() |