File size: 26,613 Bytes
6043d93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# -*- coding: utf-8 -*-
"""G project.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/13NvZhwwfiJloW8ZsdQ6HLf-jfSRc-tfv
"""
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-train.txt"
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-dev.txt"
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-test-tweets.txt"
!wget "https://alt.qcri.org/resources1/OSACT2022/OSACT2022-sharedTask-test-taskA-gold-labels.txt"
import pandas as pd
import csv
train_data = pd.read_csv("OSACT2022-sharedTask-train.txt", sep="\t", quoting=csv.QUOTE_NONE)
dev_data = pd.read_csv("OSACT2022-sharedTask-dev.txt", sep="\t", quoting=csv.QUOTE_NONE)
test_data = pd.read_csv("OSACT2022-sharedTask-test-tweets.txt", sep="\t", quoting=csv.QUOTE_NONE)
train_data
train_data = train_data.drop(columns=['1', 'NOT_HS', 'NOT_VLG' , 'NOT_VIO'])
train_data
train_data = train_data.rename(columns={"@USER ุฑุฏููุง ุน ุงูุชุทูุฒ ๐๐๐ป": "Text"})
train_data = train_data.rename(columns={"OFF": "label"})
train_data
dev_data
dev_data = dev_data.drop(columns=['8888', 'NOT_HS', 'NOT_VLG' , 'NOT_VIO'])
dev_data = dev_data.rename(columns={"@USER ุงูุทุฑุช ุนููู ุจุนูุงุก ูุงุซููู ู
ู ูุฑูุฎูุง ุงูุฌู ๐ช๐": "Text"})
dev_data = dev_data.rename(columns={"NOT_OFF": "label"})
dev_data
test_data
test_data = test_data.drop(columns=['10158'])
test_data = test_data.rename(columns={"@USER ูุชูุฒุฑ ู
ุนุงูุง ููุง ุงูู ๐ก๐ก๐ก๐ก": "Text"})
test_data
test_labels = pd.read_csv("OSACT2022-sharedTask-test-taskA-gold-labels.txt", sep="\t", quoting=csv.QUOTE_NONE)
test_labels = test_labels.rename(columns={"NOT_OFF": "label"})
test_data = test_data.join(test_labels)
test_data
"""# **DOWNLOADING A LIST OF ARABIC STOPWORDS**"""
# Alharbi, Alaa, and Mark Lee. "Kawarith: an Arabic Twitter Corpus for Crisis Events."
# Proceedings of the Sixth Arabic Natural Language Processing Workshop. 2021
!wget https://raw.githubusercontent.com/alaa-a-a/multi-dialect-arabic-stop-words/main/Stop-words/stop_list_1177.txt
arabic_stop_words = []
with open ('./stop_list_1177.txt',encoding='utf-8') as f :
for word in f.readlines() :
arabic_stop_words.append(word.split("\n")[0])
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import WordPunctTokenizer
from nltk.stem.isri import ISRIStemmer
import string
import re
from bs4 import BeautifulSoup
nltk.download('stopwords')
tok = WordPunctTokenizer()
def normalize_arabic(text):
text = re.sub("[ุฅุฃุขุง]", "ุง", text)
text = re.sub("ู", "ู", text)
text = re.sub("ุค", "ุก", text)
text = re.sub("ุฆ", "ุก", text)
text = re.sub("ุฉ", "ู", text)
text = re.sub("ฺฏ", "ู", text)
return text
def remove_diacritics(text):
arabic_diacritics = re.compile("""
ู | # Tashdid
ู | # Fatha
ู | # Tanwin Fath
ู | # Damma
ู | # Tanwin Damm
ู | # Kasra
ู | # Tanwin Kasr
ู | # Sukun
ู # Tatwil/Kashida
""", re.VERBOSE)
return re.sub(arabic_diacritics, '', text)
def remove_punctuations(text):
arabic_punctuations = '''`รทรุ<>_()*&^%][ูุ/:"ุ.,'{}~ยฆ+|!โโฆโโู'''
english_punctuations = string.punctuation
punctuations_list = arabic_punctuations + english_punctuations
translator = str.maketrans('', '', punctuations_list)
return text.translate(translator)
def remove_repeating_char(text):
# return re.sub(r'(.)\1+', r'\1', text) # keep only 1 repeat
return re.sub(r'(.)\1+', r'\1\1', text) # keep 2 repeat
def remove_stop_words(text):
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
word_list = [ w for w in word_list if not w in arabic_stop_words]
return (" ".join(word_list)).strip()
def remove_non_arabic_letters(text):
text = re.sub(r'([@A-Za-z0-9_]+)|#|http\S+', ' ', text) # removes non arabic letters
text = re.sub(r'ููููููููููููู', '', text) # removes non arabic letters
return text
def clean_str(text):
text = remove_non_arabic_letters(text)
text = remove_punctuations(text)
text = remove_diacritics(text)
text = remove_repeating_char(text)
# text = remove_stop_words(text)
# Extract text from HTML tags, especially when dealing with data from ๐ (Twitter)
soup = BeautifulSoup(text, 'lxml')
souped = soup.get_text()
pat1 = r'@[A-Za-z0-9]+'
pat2 = r'https?://[A-Za-z0-9./]+'
combined_pat = r'|'.join((pat1, pat2))
stripped = re.sub(combined_pat, '', souped)
try:
clean = stripped.decode("utf-8-sig").replace(u"\ufffd", "?")
except:
clean = stripped
words = tok.tokenize(clean)
return (" ".join(words)).strip()
"""## **applying preprocessing on our dataset**"""
print("Cleaning and parsing the training dataset...\n")
train_data["Text"] = train_data["Text"].apply(lambda x: clean_str(x))
train_data.head()
print("Cleaning and parsing the development dataset...\n")
dev_data["Text"] = dev_data["Text"].apply(lambda x: clean_str(x))
dev_data.head()
print("Cleaning and parsing the test dataset...\n")
test_data["Text"] = test_data["Text"].apply(lambda x: clean_str(x))
test_data.head()
label2id = {"NOT_OFF": 0,"OFF": 1}
id2label = {0: "NOT_OFF", 1: "OFF"}
train_data['label'] = train_data['label'].apply(lambda x: label2id[x])
train_data=train_data[["Text", "label"]]
train_data.head()
dev_data['label'] = dev_data['label'].apply(lambda x: label2id[x])
dev_data=dev_data[["Text", "label"]]
dev_data.head()
test_data['label'] = test_data['label'].apply(lambda x: label2id[x])
test_data=test_data[["Text", "label"]]
test_data
import pandas as pd
from imblearn.over_sampling import RandomOverSampler
from collections import Counter
X = train_data[['Text']]
y = train_data['label']
print('Original class distribution:', Counter(y))
ros = RandomOverSampler(random_state=42)
X_resampled, y_resampled = ros.fit_resample(X, y)
train_data_resampled = pd.DataFrame(X_resampled, columns=['Text'])
train_data_resampled['label'] = y_resampled
print('Resampled class distribution:', Counter(y_resampled))
y_resampled.value_counts()
train_data_resampled.head()
from sklearn.model_selection import train_test_split
X_train = train_data_resampled['Text'].values
y_train = train_data_resampled['label'].values
X_val = dev_data['Text'].values
y_val = dev_data['label'].values
print("Training data shape:", X_train.shape, y_train.shape)
print("Validation data shape:", X_val.shape, y_val.shape)
train_text_lengths = [len(text.split()) for text in X_train]
max_length = max(train_text_lengths)
print("Maximum length of text:", max_length)
"""### APPLYING QARIB MODEL"""
! pip install transformers[torch]
import numpy as np
# to prepare dataset and calculate metrics
from sklearn.metrics import classification_report, accuracy_score, f1_score, confusion_matrix, precision_score , recall_score
from transformers import AutoConfig, BertForSequenceClassification, AutoTokenizer
from transformers.data.processors import SingleSentenceClassificationProcessor, InputFeatures
from transformers import Trainer , TrainingArguments
train_df = pd.DataFrame({
'label':y_train,
'text': X_train
})
dev_df = pd.DataFrame({
'label':y_val,
'text': X_val
})
test_df = pd.DataFrame({
'label':test_data['label'],
'text': test_data['Text']
})
PREFIX_LIST = [
"ุงู",
"ู",
"ู",
"ุจ",
"ู",
"ู",
"ูู",
"\u0627\u0644",
"\u0648",
"\u0641",
"\u0628",
"\u0643",
"\u0644",
"\u0644\u0644",
"ุณ",
]
SUFFIX_LIST = [
"ู",
"ูุง",
"ู",
"ู",
"ูู
ุง",
"ูู
ุง",
"ูุง",
"ูู
",
"ูู
",
"ูู",
"ูู",
"ุง",
"ุงู",
"ูู",
"ูู",
"ูุง",
"ุงุช",
"ุช",
"ู",
"ุฉ",
"\u0647",
"\u0647\u0627",
"\u0643",
"\u064a",
"\u0647\u0645\u0627",
"\u0643\u0645\u0627",
"\u0646\u0627",
"\u0643\u0645",
"\u0647\u0645",
"\u0647\u0646",
"\u0643\u0646",
"\u0627",
"\u0627\u0646",
"\u064a\u0646",
"\u0648\u0646",
"\u0648\u0627",
"\u0627\u062a",
"\u062a",
"\u0646",
"\u0629",
]
# the never_split list is used with the transformers library
_PREFIX_SYMBOLS = [x + "+" for x in PREFIX_LIST]
_SUFFIX_SYMBOLS = ["+" + x for x in SUFFIX_LIST]
NEVER_SPLIT_TOKENS = list(set(_PREFIX_SYMBOLS + _SUFFIX_SYMBOLS))
model_name = "qarib/bert-base-qarib"
num_labels = 2
config = AutoConfig.from_pretrained(model_name,num_labels=num_labels, output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained(model_name,
do_lower_case=False,
do_basic_tokenize=True,
never_split=NEVER_SPLIT_TOKENS)
tokenizer.max_len = 64
model = BertForSequenceClassification.from_pretrained(model_name, config=config)
train_dataset = SingleSentenceClassificationProcessor(mode='classification')
dev_dataset = SingleSentenceClassificationProcessor(mode='classification')
train_dataset.add_examples(texts_or_text_and_labels=train_df['text'],labels=train_df['label'],overwrite_examples = True)
dev_dataset.add_examples(texts_or_text_and_labels=dev_df['text'],labels=dev_df['label'],overwrite_examples = True)
print(train_dataset.examples[0])
train_features = train_dataset.get_features(tokenizer = tokenizer, max_length =64)
dev_features = dev_dataset.get_features(tokenizer = tokenizer, max_length =64)
# print(config)
print(len(train_features))
print(len(dev_features))
def compute_metrics(p): #p should be of type EvalPrediction
print(np.shape(p.predictions[0]))
print(np.shape(p.predictions[1]))
print(len(p.label_ids))
preds = np.argmax(p.predictions[0], axis=1)
assert len(preds) == len(p.label_ids)
print(classification_report(p.label_ids,preds))
print(confusion_matrix(p.label_ids,preds))
macro_f1 = f1_score(p.label_ids,preds,average='macro')
macro_precision = precision_score(p.label_ids,preds,average='macro')
macro_recall = recall_score(p.label_ids,preds,average='macro')
acc = accuracy_score(p.label_ids,preds)
return {
'macro_f1' : macro_f1,
'macro_precision': macro_precision,
'macro_recall': macro_recall,
'accuracy': acc
}
! mkdir train
training_args = TrainingArguments("./train")
training_args.do_train = True
training_args.evaluate_during_training = True
training_args.adam_epsilon = 1e-8
training_args.learning_rate = 2e-5
training_args.warmup_steps = 0
training_args.per_device_train_batch_size = 64 #Increase batch size
training_args.per_device_eval_batch_size = 64 #Increase batch size
training_args.num_train_epochs = 2 #reduce number of epoch
training_args.logging_steps = 300 #Increase logging steps
training_args.save_steps = 2000 #Increase save steps
training_args.seed = 42
print(training_args.logging_steps)
# instantiate trainer
trainer = Trainer(model=model,
args = training_args,
train_dataset = train_features,
eval_dataset = dev_features,
compute_metrics = compute_metrics)
# start training
trainer.train()
trainer.evaluate()
!pip install fasttext
import fasttext
import fasttext.util
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="facebook/fasttext-ar-vectors", filename="model.bin")
# model_path = "./fasttext-ar-vectors-150.bin"
model_fasttext = fasttext.load_model(model_path)
# model_fasttext = fasttext.util.reduce_model(model_fasttext, 150) # reduce embeddings dimension to 150 from 300; requires a huge memory notebook
# model_fasttext.save_model("/content/drive/MyDrive/Colab Notebooks/text-aml/hate-speech-ds/fasttext-ar-vectors-150.bin")
print(len(model_fasttext.words))
model_fasttext['bread'].shape
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import WordPunctTokenizer
from nltk.stem.isri import ISRIStemmer
import string
import re
from bs4 import BeautifulSoup
nltk.download('stopwords')
tok = WordPunctTokenizer()
def normalize_arabic(text):
text = re.sub("[ุฅุฃุขุง]", "ุง", text)
text = re.sub("ู", "ู", text)
text = re.sub("ุค", "ุก", text)
text = re.sub("ุฆ", "ุก", text)
text = re.sub("ุฉ", "ู", text)
text = re.sub("ฺฏ", "ู", text)
return text
def remove_diacritics(text):
arabic_diacritics = re.compile("""
ู | # Tashdid
ู | # Fatha
ู | # Tanwin Fath
ู | # Damma
ู | # Tanwin Damm
ู | # Kasra
ู | # Tanwin Kasr
ู | # Sukun
ู # Tatwil/Kashida
""", re.VERBOSE)
return re.sub(arabic_diacritics, '', text)
def remove_punctuations(text):
arabic_punctuations = '''`รทรุ<>_()*&^%][ูุ/:"ุ.,'{}~ยฆ+|!โโฆโโู'''
english_punctuations = string.punctuation
punctuations_list = arabic_punctuations + english_punctuations
translator = str.maketrans('', '', punctuations_list)
return text.translate(translator)
def remove_repeating_char(text):
# return re.sub(r'(.)\1+', r'\1', text) # keep only 1 repeat
return re.sub(r'(.)\1+', r'\1\1', text) # keep 2 repeat
def remove_stop_words(text):
#nltk.download('stopwords')
englishStopWords = stopwords.words('english')
all_stopwords = set(englishStopWords + arabic_stop_words)
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
word_list = [ w for w in word_list if not w in all_stopwords ]
return (" ".join(word_list)).strip()
def get_root(text):
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
result = []
arstemmer = ISRIStemmer()
for word in word_list: result.append(arstemmer.stem(word))
return (' '.join(result)).strip()
def clean_tweet(text):
text = re.sub(r'([@A-Za-z0-9_]+)|#|http\S+', ' ', text) # removes non arabic letters
text = re.sub(r'ููููููููููููู', '', text) # removes non arabic letters
return text
def clean_str(text):
text = clean_tweet(text)
# text = normalize_arabic(text)
text = remove_punctuations(text) ###
text = remove_diacritics(text)
text = remove_repeating_char(text) ###
# text = remove_stop_words(text) ###
text = text.replace('ูู', 'ู') ###
text = text.replace('ูู', 'ู') ###
text = text.replace('ุงุง', 'ุง') ###
# text = get_root(text) ###
soup = BeautifulSoup(text, 'lxml')
souped = soup.get_text()
pat1 = r'@[A-Za-z0-9]+'
pat2 = r'https?://[A-Za-z0-9./]+'
combined_pat = r'|'.join((pat1, pat2))
stripped = re.sub(combined_pat, '', souped)
try:
clean = stripped.decode("utf-8-sig").replace(u"\ufffd", "?")
except:
clean = stripped
words = tok.tokenize(clean)
return (" ".join(words)).strip()
!gdown "165kzfZDsRTZAAfZKedeZiUlKzMcHNgPd" # arabic stop words
!gdown "1WdgbvqDYIa-g5ijjsz5zb-3lVvUXUtmS&confirm=t" # qarib pretrained model
!gdown "1foNTGFjhWAxS-_SfF7rga80UmFT7BDJ0&confirm=t" # fasttext-ar-vectors-150.bin
!pip install pyarabic
!pip install farasapy
!pip install transformers[torch]
!pip install Keras-Preprocessing
! git clone https://github.com/facebookresearch/fastText.git
! cd fastText && sudo pip install .
from transformers import pipeline
unmasker_MARBERT = pipeline('fill-mask', model='UBC-NLP/MARBERT', top_k=50)
def light_preprocess(text):
text = clean_tweet(text)
# text = normalize_arabic(text)
text = remove_punctuations(text) ###
text = remove_diacritics(text)
text = remove_repeating_char(text) ###
text = text.replace('ูู', 'ู') ###
text = text.replace('ูู', 'ู') ###
text = text.replace('ุงุง', 'ุง') ###
return text
nltk.download('stopwords')
englishStopWords = stopwords.words('english')
arabic_punctuations = '''`รทรุ<>_()*&^%][ูุ/:"ุ.,'{}~ยฆ+|!โโฆโโู'''
english_punctuations = string.punctuation
punctuations_list = arabic_punctuations + english_punctuations
all_stopwords = set(englishStopWords + arabic_stop_words)
!pip install torch # Install the PyTorch library if you haven't already
import torch
# Determine if a GPU is available and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def classsify_tweets(tweet):
df = pd.DataFrame({"tweet": tweet})
df['clean_tweet'] = df['tweet'].apply(lambda x: clean_str(x))
dev_df = pd.DataFrame({
'id':range(len(df)),
'text': df["clean_tweet"]
})
test_example = SingleSentenceClassificationProcessor(mode='classification')
test_example.add_examples(texts_or_text_and_labels=dev_df['text'], overwrite_examples = True)
test_features = test_example.get_features(tokenizer = tokenizer, max_length =64)
input_ids = [i.input_ids for i in test_features]
attention_masks = [i.attention_mask for i in test_features]
inputs = torch.tensor(input_ids)
masks = torch.tensor(attention_masks)
# Put the model in an evaluation state
model.eval()
# Transfer model to GPU
model.to(device)
torch.cuda.empty_cache() # empty the gpu memory
# Transfer the batch to gpu
inputs = inputs.to(device)
masks = masks.to(device)
# Run inference on the example
output = model(inputs, attention_mask=masks)["logits"]
# Transfer the output to CPU again and convert to numpy
output = output.cpu().detach().numpy()
return output
size = len(test_data)
print("size of test set:", size)
correct_class_tweets = []
correct_class = []
for i in range(0, size):
txt = test_data['Text'].astype('U')[i]
cls = test_data['label'][i]
label = id2label[np.argmax(classsify_tweets([txt]), axis=1)[0]]
if label == cls and label == 1:
correct_class_tweets.append(txt)
correct_class.append(cls)
from scipy.spatial import distance
from farasa.stemmer import FarasaStemmer
frasa_stemmer = FarasaStemmer(interactive=True)
!pip install emoji
import emoji
def select_best_replacement(pos, x_cur, verbose=False):
""" Select the most effective replacement to word at pos (pos) in (x_cur)"""
if bool(emoji.emoji_count(x_cur.split()[pos])):
return None
embedding_masked_word = model_fasttext[x_cur.split()[pos]]
x_masked = (" ".join(x_cur.split()[:pos]) + " [MASK] " + " ".join(x_cur.split()[pos + 1:])).strip()
unmasked_seq = unmasker_MARBERT(x_masked)[:20]
max_sim = -1
best_perturb_dict = {}
for seq in unmasked_seq:
if frasa_stemmer.stem(seq['token_str']) in frasa_stemmer.stem(x_cur.split()[pos]):
continue
if seq['token_str'] in punctuations_list or pos >= len(seq["sequence"].split()):
continue
embedding_masked_word_new = model_fasttext[seq['token_str']]
if np.sum(embedding_masked_word) == 0 or np.sum(embedding_masked_word_new) == 0:
continue
if verbose: print("New word: ", seq['token_str'])
sim = 1 - distance.cosine(embedding_masked_word, embedding_masked_word_new)
if sim > max_sim:
max_sim = sim
best_perturb_dict["sim"] = sim
best_perturb_dict["Masked word"] = x_cur.split()[pos]
best_perturb_dict["New word"] = seq['token_str']
best_perturb_dict["New seq"] = x_cur.replace(x_cur.split()[pos], seq['token_str'])
return best_perturb_dict.get("New seq", None)
# Process tweets and perturb
perturb_counter = 0
for tweet_ix, tweet in enumerate(correct_class_tweets):
print("Tweet index: ", tweet_ix)
x_adv = light_preprocess(tweet)
x_len = len(x_adv.split())
orig_class = np.argmax(classsify_tweets([x_adv]), axis=1)[0]
orig_label = id2label[orig_class]
print(f"Original tweet: {x_adv} : Original label: {orig_label}.")
splits = len(x_adv.split())
perturbed_flag = False
for split_ix in range(splits):
perturbed = select_best_replacement(split_ix, x_adv)
if perturbed:
new_class = np.argmax(classsify_tweets([perturbed]), axis=1)[0]
if orig_class != new_class:
print(f"Perturbed tweet: {perturbed} : New label: {id2label[new_class]}.")
print(10 * "==")
if not perturbed_flag:
perturb_counter += 1
perturbed_flag = True
if not perturbed_flag:
print(10 * "==")
print(f"Successful perturbation {perturb_counter} out of {len(correct_class_tweets)}.")
off_tweets_count = sum(test_data['label'] == 1 )
print(f"Number of offensive tweets in the dataset: {off_tweets_count}")
size = len(test_data)
print("size of test set:", size)
correct_class_tweets = []
correct_class = []
for i in range(0, size):
txt = test_data['Text'].astype('U')[i]
cls = test_data['label'][i]
label = id2label[np.argmax(classsify_tweets([txt]), axis=1)[0]]
print(f"Tweet: {txt} | Actual: {cls} | Predicted: {label}")
if label == cls and label == "OFF":
correct_class_tweets.append(txt)
correct_class.append(cls)
print(f"Correctly classifiedย asย OFF:ย {txt}")
!pip install gradio
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load the model and tokenizer
model_name = "qarib/bert-base-qarib"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Preprocessing function
def light_preprocess(text):
text = text.replace("@USER", "").replace("RT", "").strip()
return text
# Prediction function
def predict_offensive(text):
preprocessed_text = light_preprocess(text)
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
return "Offensive" if predicted_class == 1 else "Not Offensive"
# Create the Gradio interface
iface = gr.Interface(
fn=predict_offensive,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs="text",
title="Offensive Language Detection",
description="Enter a text to check if it's offensive or not.",
)
# Launch the interface
iface.launch()
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load the models and tokenizers
model_name_1 = "qarib/bert-base-qarib"
model_name_2 = "bert-base-multilingual-cased"
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1, num_labels=2)
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2, num_labels=2)
# Preprocessing function
def light_preprocess(text):
text = text.replace("@USER", "").replace("RT", "").strip()
return text
# Prediction function
def predict_offensive(text, model_choice):
if model_choice == "Model 1":
tokenizer = tokenizer_1
model = model_1
else:
tokenizer = tokenizer_2
model = model_2
preprocessed_text = light_preprocess(text)
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
return "Offensive" if predicted_class == 1 else "Not Offensive"
# Create the Gradio interface with a modern theme
iface = gr.Interface(
fn=predict_offensive,
inputs=[
gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"),
gr.Dropdown(choices=["Model 1", "Model 2"], label="Select Model")
],
outputs=gr.Textbox(label="Prediction"),
title="Offensive Language Detection",
description="Enter a text to check if it's offensive or not using the selected model.",
theme="default", # Use "dark" for dark mode
css=".gradio-container { background-color: #f0f0f0; } .output-textbox { font-size: 20px; color: #007BFF; }"
)
# Launch the interface
iface.launch()
!pip install gradio
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load the models and tokenizers
model_name_1 = "qarib/bert-base-qarib"
model_name_2 = "bert-base-multilingual-cased"
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1, num_labels=2)
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2, num_labels=2)
# Preprocessing function
def light_preprocess(text):
text = text.replace("@USER", "").replace("RT", "").strip()
return text
# Prediction function
def predict_offensive(text, model_choice):
if model_choice == "Model 1":
tokenizer = tokenizer_1
model = model_1
else:
tokenizer = tokenizer_2
model = model_2
preprocessed_text = light_preprocess(text)
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
return "Offensive" if predicted_class == 1 else "Not Offensive"
# Create the Gradio interface using Text Classification template
iface = gr.Interface(
fn=predict_offensive,
inputs=[
gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"),
gr.Dropdown(choices=["Model 1", "Model 2"], label="Select Model")
],
outputs=gr.Textbox(label="Prediction"),
title="Offensive Language Detection",
description="Enter a text to check if it's offensive or not using the selected model.",
theme="default", # Change to "dark" for dark mode
)
# Launch the interface
iface.launch() |