import pandas as pd import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go import matplotlib.pyplot as plt import plotly.express as px from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import VotingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression OPTION_LIST = ['Gender and Churn Distribution','Customer Contract Distribution','Payment Method Distribution','Payment Method Distribution Churn', 'Churn Distribution w.r.t Internet Service and Gender','Dependents Distribution Churn', 'Churn Distribution w.r.t Partners','Churn Distribution w.r.t Senior Citizens', 'Churn Distribution w.r.t Online Security','Churn Distribution w.r.t Paperless Billing', 'Churn Distribution w.r.t Tech Support','Churn Distribution w.r.t Phone Service', 'Tenure vs. Churn'] MODEL_SELECTOR = ['KNN','SVC','RF','LR','DT','Adaboost','Gradient Boosting','Voting Classifier'] num_cols = ["tenure", 'MonthlyCharges', 'TotalCharges'] scaler= StandardScaler() def preprocess(df): df = df.drop(['customerID'], axis = 1) df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce') df[np.isnan(df['TotalCharges'])] df[df['tenure'] == 0].index df.drop(labels=df[df['tenure'] == 0].index, axis=0, inplace=True) df[df['tenure'] == 0].index df.fillna(df["TotalCharges"].mean()) df["SeniorCitizen"]= df["SeniorCitizen"].map({0: "No", 1: "Yes"}) return df def object_to_int(dataframe_series): if dataframe_series.dtype=='object': dataframe_series = LabelEncoder().fit_transform(dataframe_series) return dataframe_series def evaluate_voter(test_feature_vector, df,test_size,random_state): print(df) df = preprocess(df) df = df.apply(lambda x: object_to_int(x)) X = df.drop(columns = ['Churn']) y = df['Churn'].values X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y) df_std = pd.DataFrame(StandardScaler().fit_transform(df[num_cols].astype('float64')),columns=num_cols) X_train[num_cols] = scaler.fit_transform(X_train[num_cols]) X_test[num_cols] = scaler.transform(X_test[num_cols]) clf1 = GradientBoostingClassifier() clf2 = LogisticRegression() clf3 = AdaBoostClassifier() eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft') eclf1.fit(X_train, y_train) #feeding the feature vector as a test input predicted_y = eclf1.predict(test_feature_vector) if predicted_y[0] == 1: #print('The customer is likely to stop using the services') return 'Customer is likely to stop using the telecom services' else: #print('The customer is likely to continue using the services') return 'Customer is likely to continue using the telecom services' def standardize_feature_vector(df,original_df, test_size,random_state): df = df.drop(['customerID'], axis = 1) df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce') #Manual label encoding is the only solution here... df["SeniorCitizen"]= df["SeniorCitizen"].map({"No": 0, "Yes": 1}) df['gender'] = df['gender'].map({'Female':0,'Male':1}) df['Partner'] = df['Partner'].map({"No":0,"Yes":1}) df['Dependents'] = df['Dependents'].map({"No":0,"Yes":1}) df['PhoneService'] = df['PhoneService'].map({"No":0,"Yes":1}) df['MultipleLines'] = df['MultipleLines'].map({"No phone service":1,"No":0,"Yes":2}) df['InternetService'] = df['InternetService'].map({'DSL':0,'Fiber optic':1,'No':2}) df['OnlineSecurity'] = df['OnlineSecurity'].map({'No':0,'Yes':2,'No internet service':1}) df['OnlineBackup'] = df['OnlineBackup'].map({'No':0,'Yes':2,'No internet service':1}) df['DeviceProtection'] = df['DeviceProtection'].map({'No':0,'Yes':2,'No internet service':1}) df['TechSupport'] = df['TechSupport'].map({'No':0,'Yes':2,'No internet service':1}) df['StreamingTV'] = df['StreamingTV'].map({'No':0,'Yes':2,'No internet service':1}) df['StreamingMovies'] = df['StreamingMovies'].map({'No':0,'Yes':2,'No internet service':1}) df['Contract'] = df['Contract'].map({'Month-to-month':0,'One year':1,'Two year':2}) df['PaperlessBilling'] = df['PaperlessBilling'].map({"No":0,"Yes":1}) df['PaymentMethod'] = df['PaymentMethod'].map({'Electronic check':2, 'Mailed check':3,'Bank transfer (automatic)':0,'Credit card (automatic)':1}) #Churn -> No:0, Yes:1 numpy_vector = df.to_numpy() print(df) print(numpy_vector) #passing the vector as a test vector to a trained voting classifier return evaluate_voter(df,original_df,test_size,random_state) def standardize_dataframe(filepath,option,test_size,random_state): df = pd.read_csv(filepath) #print(df) df_new = preprocess(df) #print(df) #label encoding the dataframe df_new = df_new.apply(lambda x: object_to_int(x)) #inputs and target selection X = df_new.drop(columns = ['Churn']) y = df_new['Churn'].values #train test split (Allowing the user to choose the optimal train/test split percentage) X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y) #Standardizing the variables df_std = pd.DataFrame(StandardScaler().fit_transform(df_new[num_cols].astype('float64')),columns=num_cols) X_train[num_cols] = scaler.fit_transform(X_train[num_cols]) X_test[num_cols] = scaler.transform(X_test[num_cols]) if option == 'KNN': knn_model = KNeighborsClassifier(n_neighbors = 11) knn_model.fit(X_train,y_train) predicted_y = knn_model.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test, predicted_y),df_new,df elif option == 'SVC': svc_model = SVC(random_state = 1) svc_model.fit(X_train,y_train) predicted_y = svc_model.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df elif option == 'RF': model_rf = RandomForestClassifier(n_estimators=500 , oob_score = True, n_jobs = -1, random_state =50, max_features = "auto", max_leaf_nodes = 30) model_rf.fit(X_train, y_train) predicted_y = model_rf.predict(X_test) return accuracy_score(y_test, predicted_y), classification_report(y_test,predicted_y),df_new,df elif option == 'LR': lr_model = LogisticRegression() lr_model.fit(X_train,y_train) predicted_y = lr_model.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df elif option == 'DT': dt_model = DecisionTreeClassifier() dt_model.fit(X_train,y_train) predicted_y = dt_model.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df elif option == 'Adaboost': a_model = AdaBoostClassifier() a_model.fit(X_train,y_train) predicted_y = a_model.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df elif option == 'Gradient Boosting': gb = GradientBoostingClassifier() gb.fit(X_train, y_train) predicted_y = gb.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df elif option == 'Voting Classifier': clf1 = GradientBoostingClassifier() clf2 = LogisticRegression() clf3 = AdaBoostClassifier() eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft') eclf1.fit(X_train, y_train) predicted_y = eclf1.predict(X_test) return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df def visualize(df): g_labels = ['Male', 'Female'] c_labels = ['No', 'Yes'] # Create subplots: use 'domain' type for Pie subplot fig1 = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]]) fig1.add_trace(go.Pie(labels=g_labels, values=df['gender'].value_counts(), name="Gender"), 1, 1) fig1.add_trace(go.Pie(labels=c_labels, values=df['Churn'].value_counts(), name="Churn"), 1, 2) # Use `hole` to create a donut-like pie chart fig1.update_traces(hole=.4, hoverinfo="label+percent+name", textfont_size=16) fig1.update_layout( title_text="Gender and Churn Distributions", # Add annotations in the center of the donut pies. annotations=[dict(text='Gender', x=0.16, y=0.5, font_size=20, showarrow=False), dict(text='Churn', x=0.84, y=0.5, font_size=20, showarrow=False)]) fig2 = px.histogram(df, x="Churn", color="Contract", barmode="group", title="Customer contract distribution") fig2.update_layout(width=700, height=500, bargap=0.1) labels = df['PaymentMethod'].unique() values = df['PaymentMethod'].value_counts() fig3 = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)]) fig3.update_layout(title_text="Payment Method Distribution") fig4 = px.histogram(df, x="Churn", color="PaymentMethod", title="Customer Payment Method distribution w.r.t. Churn") fig4.update_layout(width=700, height=500, bargap=0.1) fig5 = go.Figure() fig5.add_trace(go.Bar( x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'], ["Female", "Male", "Female", "Male"]], y = [965, 992, 219, 240], name = 'DSL', )) fig5.add_trace(go.Bar( x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'], ["Female", "Male", "Female", "Male"]], y = [889, 910, 664, 633], name = 'Fiber optic', )) fig5.add_trace(go.Bar( x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'], ["Female", "Male", "Female", "Male"]], y = [690, 717, 56, 57], name = 'No Internet', )) fig5.update_layout(title_text="Churn Distribution w.r.t. Internet Service and Gender") color_map = {"Yes": "#FF97FF", "No": "#AB63FA"} fig6 = px.histogram(df, x="Churn", color="Dependents", barmode="group", title="Dependents distribution", color_discrete_map=color_map) fig6.update_layout(width=700, height=500, bargap=0.1) color_map = {"Yes": '#FFA15A', "No": '#00CC96'} fig7 = px.histogram(df, x="Churn", color="Partner", barmode="group", title="Churn distribution w.r.t. Partners", color_discrete_map=color_map) fig7.update_layout(width=700, height=500, bargap=0.1) color_map = {"Yes": '#00CC96', "No": '#B6E880'} fig8 = px.histogram(df, x="Churn", color="SeniorCitizen", title="Churn distribution w.r.t. Senior Citizen", color_discrete_map=color_map) fig8.update_layout(width=700, height=500, bargap=0.1) color_map = {"Yes": "#FF97FF", "No": "#AB63FA"} fig9 = px.histogram(df, x="Churn", color="OnlineSecurity", barmode="group", title="Churn distribution w.r.t Online Security", color_discrete_map=color_map) fig9.update_layout(width=700, height=500, bargap=0.1) color_map = {"Yes": '#FFA15A', "No": '#00CC96'} fig10 = px.histogram(df, x="Churn", color="PaperlessBilling", title="Churn distribution w.r.t. Paperless Billing", color_discrete_map=color_map) fig10.update_layout(width=700, height=500, bargap=0.1) fig11 = px.histogram(df, x="Churn", color="TechSupport",barmode="group", title="Churn distribution w.r.t. Tech Support") fig11.update_layout(width=700, height=500, bargap=0.1) color_map = {"Yes": '#00CC96', "No": '#B6E880'} fig12 = px.histogram(df, x="Churn", color="PhoneService", title="Churn Distribution w.r.t. Phone Service", color_discrete_map=color_map) fig12.update_layout(width=700, height=500, bargap=0.1) fig13 = px.box(df, x='Churn', y = 'tenure') fig13.update_yaxes(title_text='Tenure (Months)', row=1, col=1) fig13.update_xaxes(title_text='Churn', row=1, col=1) fig13.update_layout(autosize=True, width=750, height=600, title_font=dict(size=25, family='Courier'), title='Tenure vs Churn', ) return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13 def take_input(filepath): df = pd.read_csv(filepath) processed_df = preprocess(df) fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13 = visualize(processed_df) return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13, processed_df