File size: 5,292 Bytes
3bc5ba6
8ba87fb
 
 
 
 
 
3bc5ba6
8ba87fb
3bc5ba6
10f8c48
8ba87fb
6ee122a
3bc5ba6
8ba87fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cec391
8ba87fb
 
 
0cec391
8ba87fb
3bc5ba6
8ba87fb
 
 
 
 
 
 
 
 
 
 
 
 
 
0cec391
8ba87fb
 
 
 
 
 
 
 
 
 
 
69e9ddf
8ba87fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cec391
8ba87fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cec391
8ba87fb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import streamlit as st
import time
from transformers import pipeline
import librosa
import numpy as np
import plotly.graph_objects as go
import tempfile
import os
import soundfile as sf


# Set page config
st.set_page_config(page_title="🎡 Jawad and Ahmad Fakhar", layout="wide")

# Custom CSS for UI
st.markdown("""
<style>
    .main-title {
        font-size: 3rem;
        color: #1DB954;
        text-align: center;
        padding: 2rem 0;
        text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
    }
    .sub-title {
        font-size: 1.5rem;
        color: #191414;
        text-align: center;
        margin-bottom: 2rem;
    }
    .stAudio {
        margin: 2rem auto;
        display: block;
    }
    .genre-result {
        font-size: 2rem;
        font-weight: bold;
        text-align: center;
        color: #1DB954;
        margin: 1rem 0;
    }
    .prediction-time {
        font-size: 1.2rem;
        color: #191414;
        text-align: center;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model():
    return pipeline("audio-classification", model="juangtzi/wav2vec2-base-finetuned-gtzan")

pipe = load_model()

def convert_to_wav(audio_file):
    """Converts uploaded audio file to WAV format."""
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
        # Use soundfile to load and save the audio file as WAV
        audio_data, samplerate = sf.read(audio_file)
        sf.write(tmp_wav.name, audio_data, samplerate)
        return tmp_wav.name

def classify_audio(audio_file):
    """Classifies the audio file using the loaded model."""
    start_time = time.time()

    # Convert to WAV format before passing to the model
    wav_file = convert_to_wav(audio_file)
    
    try:
        # Use the wav file with the model
        preds = pipe(wav_file)
        outputs = {p["label"]: p["score"] for p in preds}
        end_time = time.time()
        prediction_time = end_time - start_time
        return outputs, prediction_time
    finally:
        os.unlink(wav_file)  # Remove the temp file

# Page title and subtitle
st.markdown("<h1 class='main-title'>🎡 Jawad and Ahmad Fakhar</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Upload a music file and let AI detect its genre!</p>", unsafe_allow_html=True)

# Sidebar with model and dataset information
st.sidebar.title("About")
st.sidebar.info("""
This app uses a fine-tuned wav2vec2-base model to classify music genres.
Model: juangtzi/wav2vec2-base-finetuned-gtzan
Dataset: GTZAN
""")

# Upload file section
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"])

if uploaded_file is not None:
    # Display the uploaded audio file
    st.audio(uploaded_file)
    
    # Classify the uploaded audio
    if st.button("Classify Genre"):
        with st.spinner("Analyzing the music... 🎧"):
            try:
                results, pred_time = classify_audio(uploaded_file)
                
                # Get the top predicted genre
                top_genre = max(results, key=results.get)
                
                # Display the top predicted genre
                st.markdown(f"<h2 class='genre-result'>Detected Genre: {top_genre.capitalize()}</h2>", unsafe_allow_html=True)
                st.markdown(f"<p class='prediction-time'>Prediction Time: {pred_time:.2f} seconds</p>", unsafe_allow_html=True)
                
                # Plot the genre probabilities as a bar chart
                fig = go.Figure(data=[go.Bar(
                    x=list(results.keys()),
                    y=list(results.values()),
                    marker_color='#1DB954'
                )])
                fig.update_layout(
                    title="Genre Probabilities",
                    xaxis_title="Genre",
                    yaxis_title="Probability",
                    paper_bgcolor='rgba(0,0,0,0)',
                    plot_bgcolor='rgba(0,0,0,0)'
                )
                st.plotly_chart(fig, use_container_width=True)

                # # Load the audio for displaying waveform
                # y, sr = librosa.load(uploaded_file, sr=None)
                
                # # Plot the audio waveform
                # st.subheader("Audio Waveform")
                # fig_waveform = go.Figure(data=[go.Scatter(y=y, mode='lines', line=dict(color='#1DB954'))])
                # fig_waveform.update_layout(
                #     title="Audio Waveform",
                #     xaxis_title="Time",
                #     yaxis_title="Amplitude",
                #     paper_bgcolor='rgba(0,0,0,0)',
                #     plot_bgcolor='rgba(0,0,0,0)'
                # )
                # st.plotly_chart(fig_waveform, use_container_width=True)

                # 🎈 Show balloons after successfully displaying the results
                st.balloons()
            
            except Exception as e:
                st.error(f"An error occurred while processing the audio: {str(e)}")
                st.info("Please try uploading the file again or use a different audio file.")

# Footer
st.markdown("""
<div style='text-align: center; margin-top: 2rem;'>
    <p>Created with ❀️ by AI. Powered by Streamlit and Hugging Face Transformers.</p>
</div>
""", unsafe_allow_html=True)