ahmadmac commited on
Commit
6af50d2
1 Parent(s): f6f340b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -60
app.py CHANGED
@@ -1,63 +1,43 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from langchain import PromptTemplate, LLMChain
3
+ from langchain_huggingface import HuggingFacePipeline, HuggingFaceEndpoint
4
+ from transformers import pipeline
5
+ import os
6
+ from google.colab import userdata
7
+
8
+ # Authenticate with Hugging Face
9
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = userdata.get('huggingface')
10
+
11
+ # Load the LLM
12
+ pipe = pipeline(
13
+ 'text2text-generation',
14
+ model='google/flan-t5-small',
15
+ max_length=60,
16
+ do_sample=True,
17
+ temperature=0.9
18
+ )
19
+ llm = HuggingFacePipeline(pipeline=pipe)
20
+
21
+ # Define the prompt template
22
+ prompt_template = """AI assistant. I am always here to help.
23
+ User: {question}
24
+ Assistant:"""
25
+ prompt = PromptTemplate(template=prompt_template, input_variables=["question"])
26
+
27
+ # Create the LLM chain
28
+ chain = LLMChain(llm=llm, prompt=prompt)
29
+
30
+ # Define the Gradio function
31
+ def chatbot(question):
32
+ response = chain.run(question)
33
+ return response
34
+
35
+ # Create the Gradio interface
36
+ demo = gr.Interface(
37
+ fn=chatbot,
38
+ inputs=gr.inputs.Textbox(lines=2, label="Question"),
39
+ outputs=gr.outputs.Textbox(label="Answer")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  )
41
 
42
+ # Launch the interface
43
+ demo.launch()