Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain import PromptTemplate, LLMChain
|
3 |
+
from langchain_huggingface import HuggingFacePipeline, HuggingFaceEndpoint
|
4 |
+
from transformers import pipeline
|
5 |
+
import os
|
6 |
+
from google.colab import userdata
|
7 |
+
|
8 |
+
# Authenticate with Hugging Face
|
9 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = userdata.get('huggingface')
|
10 |
+
|
11 |
+
# Load the LLM
|
12 |
+
pipe = pipeline(
|
13 |
+
'text2text-generation',
|
14 |
+
model='google/flan-t5-small',
|
15 |
+
max_length=60,
|
16 |
+
do_sample=True,
|
17 |
+
temperature=0.9
|
18 |
+
)
|
19 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
20 |
+
|
21 |
+
# Define the prompt template
|
22 |
+
prompt_template = """AI assistant. I am always here to help.
|
23 |
+
User: {question}
|
24 |
+
Assistant:"""
|
25 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["question"])
|
26 |
+
|
27 |
+
# Create the LLM chain
|
28 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
29 |
+
|
30 |
+
# Define the Gradio function
|
31 |
+
def chatbot(question):
|
32 |
+
response = chain.run(question)
|
33 |
+
return response
|
34 |
+
|
35 |
+
# Create the Gradio interface
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=chatbot,
|
38 |
+
inputs=gr.inputs.Textbox(lines=2, label="Question"),
|
39 |
+
outputs=gr.outputs.Textbox(label="Answer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
+
# Launch the interface
|
43 |
+
demo.launch()
|
|