import gradio as gr from gradio import Interface, Textbox, Markdown,Slider from transformers import AutoModelForCausalLM , AutoTokenizer import torch openelm_270m_instruct = AutoModelForCausalLM.from_pretrained("apple/OpenELM-270M", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf") def generate(newQuestion,num): tokenized_prompt = tokenizer(newQuestion) tokenized_prompt = torch.tensor( tokenized_prompt['input_ids'], ) tokenized_prompt = tokenized_prompt.unsqueeze(0) # Generate output_ids = openelm_270m_instruct.generate( tokenized_prompt, max_length=int(num), pad_token_id=0, ) output_text = tokenizer.decode( output_ids[0].tolist(), skip_special_tokens=True ) return output_text developer_info = """ this space is developed by Ahmadreza Anaami \n feel free to set via Api key too \n apple/OpenELM-270M """ def greet(name,num): return generate(name,num) iface = gr.Interface( fn=greet, inputs=[Textbox(label="Enter Text Here:", type="text"),Textbox(label="number of generated tokens:", type="text")], outputs=[Textbox(label="generated answer:")], title="OpenELM-270M-Instruct", # Markdown(developer_info, elem_id="dev-info"), # Place Markdown directly description = developer_info, css=""" /* Style the developer info section (optional) */ #dev-info { font-size: 0.8rem; color: #888; /* Adjust color as desired */ margin-top: 1rem; text-align: center; } /* Style the input area (optional) */ .gr-input text { padding: 10px; border-radius: 5px; font-size: 1rem; } /* Style the score label (optional) */ .gr-output.gr-slider label { font-weight: bold; } """, ) iface.launch()