File size: 1,941 Bytes
ceb87f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97214bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import ClassVar

import torch
from torch import nn
from modeling_florence2 import Florence2ForConditionalGeneration, Florence2VisionLanguageModel
from configuration_florence2 import Florence2Config


class ColFlor(Florence2VisionLanguageModel):
    """
    ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
    """

    main_input_name: ClassVar[str] = "doc_input_ids"  # transformers-related

    def __init__(self, config: Florence2Config, use_cache=False):
        super().__init__(config=config)

        self.dim = 128
        self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
        # Now initialize weights properly
        self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
        self.custom_text_proj.bias.data.zero_()

        self.padding_side = "right"
        self.post_init()

    def forward(self, *args, **kwargs) -> torch.Tensor:
        # Delete output_hidden_states from kwargs
        kwargs.pop("output_hidden_states", None)

        # Create Full Attention Mask that includes both the image and text
        if 'full_attention_mask' in kwargs:
          full_attention_mask = kwargs['full_attention_mask']
          del kwargs['full_attention_mask']
        else:
          full_attention_mask = kwargs['attention_mask']

        outputs = super().forward(*args,
                                  **kwargs)  # (batch_size, sequence_length, hidden_size)

        last_hidden_states = outputs['encoder_last_hidden_state']  # (batch_size, sequence_length, hidden_size)
        
        proj = self.custom_text_proj(last_hidden_states)  # (batch_size, sequence_length, dim)
        # L2 normalization
        proj = proj / proj.norm(dim=-1, keepdim=True)  # (batch_size, sequence_length, dim)
        proj = proj * full_attention_mask.unsqueeze(-1)  # (batch_size, sequence_length, dim)

        return proj