File size: 25,243 Bytes
7e02cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import requests
from bs4 import BeautifulSoup
import yfinance as yf
import pandas as pd
from datetime import datetime, timedelta
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
from langchain_google_genai import ChatGoogleGenerativeAI
from config import Config
import numpy as np
from typing import Optional, Tuple, List, Dict
from rag import get_answer

# Set up logging
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    handlers=[logging.FileHandler("app.log"),
                              logging.StreamHandler()])

logger = logging.getLogger(__name__)

# Initialize the Gemini model
llm = ChatGoogleGenerativeAI(api_key=Config.GEMINI_API_KEY, model="gemini-1.5-flash-latest", temperature=0.5)

# Configuration for Google Custom Search API
GOOGLE_API_KEY = Config.GOOGLE_API_KEY
SEARCH_ENGINE_ID = Config.SEARCH_ENGINE_ID

def fetch_google_snippet(query: str) -> Optional[str]:
    try:
        search_url = f"https://www.google.com/search?q={query}"
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
        }
        response = requests.get(search_url, headers=headers)
        soup = BeautifulSoup(response.text, 'html.parser')
        snippet_classes = [
            'BNeawe iBp4i AP7Wnd',
            'BNeawe s3v9rd AP7Wnd',
            'BVG0Nb',
            'kno-rdesc'
        ]
        for cls in snippet_classes:
            snippet = soup.find('div', class_=cls)
            if snippet:
                return snippet.get_text()
        return "Snippet not found."
    except Exception as e:
        logger.error(f"Error fetching Google snippet: {e}")
        return None

class DataSummarizer:
    def __init__(self):
        pass

    def google_search(self, query: str) -> Optional[Dict]:
        try:
            url = "https://www.googleapis.com/customsearch/v1"
            params = {
                'key': GOOGLE_API_KEY,
                'cx': SEARCH_ENGINE_ID,
                'q': query
            }
            response = requests.get(url, params=params)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error during Google Search API request: {e}")
            return None

    def extract_content_from_item(self, item: Dict) -> Optional[str]:
        try:
            snippet = item.get('snippet', '')
            title = item.get('title', '')
            return f"{title}\n{snippet}"
        except Exception as e:
            logger.error(f"Error extracting content from item: {e}")
            return None

    def calculate_moving_average(self, df: pd.DataFrame, window: int = 20) -> Optional[pd.Series]:
        try:
            return df['close'].rolling(window=window).mean()
        except Exception as e:
            logger.error(f"Error calculating moving average: {e}")
            return None

    def calculate_rsi(self, df: pd.DataFrame, window: int = 14) -> Optional[pd.Series]:
        try:
            delta = df['close'].diff()
            gain = delta.where(delta > 0, 0).rolling(window=window).mean()
            loss = -delta.where(delta < 0, 0).rolling(window=window).mean()
            rs = gain / loss
            return 100 - (100 / (1 + rs))
        except Exception as e:
            logger.error(f"Error calculating RSI: {e}")
            return None

    def calculate_ema(self, df: pd.DataFrame, window: int = 20) -> Optional[pd.Series]:
        try:
            return df['close'].ewm(span=window, adjust=False).mean()
        except Exception as e:
            logger.error(f"Error calculating EMA: {e}")
            return None

    def calculate_bollinger_bands(self, df: pd.DataFrame, window: int = 20) -> Optional[pd.DataFrame]:
        try:
            ma = df['close'].rolling(window=window).mean()
            std = df['close'].rolling(window=window).std()
            upper_band = ma + (std * 2)
            lower_band = ma - (std * 2)
            return pd.DataFrame({'MA': ma, 'Upper Band': upper_band, 'Lower Band': lower_band})
        except Exception as e:
            logger.error(f"Error calculating Bollinger Bands: {e}")
            return None

    def calculate_macd(self, df: pd.DataFrame, short_window: int = 12, long_window: int = 26, signal_window: int = 9) -> \
            Optional[pd.DataFrame]:
        try:
            short_ema = df['close'].ewm(span=short_window, adjust=False).mean()
            long_ema = df['close'].ewm(span=long_window, adjust=False).mean()
            macd = short_ema - long_ema
            signal = macd.ewm(span=signal_window, adjust=False).mean()
            return pd.DataFrame({'MACD': macd, 'Signal Line': signal})
        except Exception as e:
            logger.error(f"Error calculating MACD: {e}")
            return None

    def calculate_volatility(self, df: pd.DataFrame, window: int = 20) -> Optional[pd.Series]:
        try:
            log_returns = np.log(df['close'] / df['close'].shift(1))
            return log_returns.rolling(window=window).std() * np.sqrt(window)
        except Exception as e:
            logger.error(f"Error calculating volatility: {e}")
            return None

    def calculate_atr(self, df: pd.DataFrame, window: int = 14) -> Optional[pd.Series]:
        try:
            high_low = df['high'] - df['low']
            high_close = np.abs(df['high'] - df['close'].shift())
            low_close = np.abs(df['low'] - df['close'].shift())
            true_range = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)
            return true_range.rolling(window=window).mean()
        except Exception as e:
            logger.error(f"Error calculating ATR: {e}")
            return None

    def calculate_obv(self, df: pd.DataFrame) -> Optional[pd.Series]:
        try:
            return (np.sign(df['close'].diff()) * df['volume']).fillna(0).cumsum()
        except Exception as e:
            logger.error(f"Error calculating OBV: {e}")
            return None

    def calculate_yearly_summary(self, df: pd.DataFrame) -> Optional[pd.DataFrame]:
        try:
            df['year'] = pd.to_datetime(df['date']).dt.year
            yearly_summary = df.groupby('year').agg({
                'close': ['mean', 'max', 'min'],
                'volume': 'sum'
            })
            yearly_summary.columns = ['_'.join(col) for col in yearly_summary.columns]
            return yearly_summary
        except Exception as e:
            logger.error(f"Error calculating yearly summary: {e}")
            return None

    def get_full_last_year(self, df: pd.DataFrame) -> Optional[pd.DataFrame]:
        try:
            today = datetime.today().date()
            last_year_start = datetime(today.year - 1, 1, 1).date()
            last_year_end = datetime(today.year - 1, 12, 31).date()
            mask = (df['date'] >= last_year_start) & (df['date'] <= last_year_end)
            return df.loc[mask]
        except Exception as e:
            logger.error(f"Error filtering data for the last year: {e}")
            return None

    def calculate_ytd_performance(self, df: pd.DataFrame) -> Optional[float]:
        try:
            today = datetime.today().date()
            year_start = datetime(today.year, 1, 1).date()
            mask = (df['date'] >= year_start) & (df['date'] <= today)
            ytd_data = df.loc[mask]
            opening_price = ytd_data.iloc[0]['open']
            closing_price = ytd_data.iloc[-1]['close']
            return ((closing_price - opening_price) / opening_price) * 100
        except Exception as e:
            logger.error(f"Error calculating YTD performance: {e}")
            return None

    def calculate_pe_ratio(self, current_price: float, eps: float) -> Optional[float]:
        try:
            if eps == 0:
                raise ValueError("EPS cannot be zero for P/E ratio calculation.")
            return current_price / eps
        except Exception as e:
            logger.error(f"Error calculating P/E ratio: {e}")
            return None

    def fetch_google_snippet(self, query: str) -> Optional[str]:
        try:
            return fetch_google_snippet(query)
        except Exception as e:
            logger.error(f"Error fetching Google snippet: {e}")
            return None

def extract_ticker_from_response(response: str) -> Optional[str]:
    try:
        if "is **" in response and "**." in response:
            return response.split("is **")[1].split("**.")[0].strip()
        return response.strip()
    except Exception as e:
        logger.error(f"Error extracting ticker from response: {e}")
        return None

def detect_translate_entity_and_ticker(query: str) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
    try:
        prompt = f"Detect the language for the following text: {query}"
        response = llm.invoke(prompt)
        detected_language = response.content.strip()

        translated_query = query
        if detected_language != "English":
            prompt = f"Translate the following text to English: {query}"
            response = llm.invoke(prompt)
            translated_query = response.content.strip()

        prompt = f"Detect the entity in the following text that is a company name: {translated_query}"
        response = llm.invoke(prompt)
        detected_entity = response.content.strip()

        prompt = f"What is the stock ticker symbol for the company {detected_entity}?"
        response = llm.invoke(prompt)
        stock_ticker = extract_ticker_from_response(response.content.strip())

        return detected_language, detected_entity, translated_query, stock_ticker
    except Exception as e:
        logger.error(f"Error in detecting, translating, or extracting entity and ticker: {e}")
        return None, None, None, None

def fetch_stock_data_yahoo(symbol: str) -> pd.DataFrame:
    try:
        stock = yf.Ticker(symbol)
        logger.info(f"Fetching data for symbol: {symbol}")

        end_date = datetime.now()
        start_date = end_date - timedelta(days=3 * 365)

        historical_data = stock.history(start=start_date, end=end_date)
        if historical_data.empty:
            raise ValueError(f"No historical data found for symbol: {symbol}")

        historical_data = historical_data.rename(
            columns={"Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}
        )

        historical_data.reset_index(inplace=True)
        historical_data['date'] = historical_data['Date'].dt.date
        historical_data = historical_data.drop(columns=['Date'])
        historical_data = historical_data[['date', 'open', 'high', 'low', 'close', 'volume']]

        if 'close' not in historical_data.columns:
            raise KeyError("The historical data must contain a 'close' column.")

        return historical_data
    except Exception as e:
        logger.error(f"Failed to fetch stock data for {symbol} from Yahoo Finance: {e}")
        return pd.DataFrame()

def fetch_current_stock_price(symbol: str) -> Optional[float]:
    try:
        stock = yf.Ticker(symbol)
        return stock.info['currentPrice']
    except Exception as e:
        logger.error(f"Failed to fetch current stock price for {symbol}: {e}")
        return None

def format_stock_data_for_gemini(stock_data: pd.DataFrame) -> str:
    try:
        if stock_data.empty:
            return "No historical data available."

        formatted_data = "Historical stock data for the last three years:\n\n"
        formatted_data += "Date       | Open   | High   | Low    | Close  | Volume\n"
        formatted_data += "------------------------------------------------------\n"

        for index, row in stock_data.iterrows():
            formatted_data += f"{row['date']} | {row['open']:.2f} | {row['high']:.2f} | {row['low']:.2f} | {row['close']:.2f} | {int(row['volume'])}\n"

        return formatted_data
    except Exception as e:
        logger.error(f"Error formatting stock data for Gemini: {e}")
        return "Error formatting stock data."

def fetch_company_info_yahoo(symbol: str) -> Dict:
    try:
        if not symbol:
            return {"error": "Invalid symbol"}

        stock = yf.Ticker(symbol)
        company_info = stock.info
        return {
            "name": company_info.get("longName", "N/A"),
            "sector": company_info.get("sector", "N/A"),
            "industry": company_info.get("industry", "N/A"),
            "marketCap": company_info.get("marketCap", "N/A"),
            "summary": company_info.get("longBusinessSummary", "N/A"),
            "website": company_info.get("website", "N/A"),
            "address": company_info.get("address1", "N/A"),
            "city": company_info.get("city", "N/A"),
            "state": company_info.get("state", "N/A"),
            "country": company_info.get("country", "N/A"),
            "phone": company_info.get("phone", "N/A")
        }
    except Exception as e:
        logger.error(f"Error fetching company info for {symbol}: {e}")
        return {"error": str(e)}

def format_company_info_for_gemini(company_info: Dict) -> str:
    try:
        if "error" in company_info:
            return f"Error fetching company info: {company_info['error']}"

        formatted_info = (f"\nCompany Information:\n"
                          f"Name: {company_info['name']}\n"
                          f"Sector: {company_info['sector']}\n"
                          f"Industry: {company_info['industry']}\n"
                          f"Market Cap: {company_info['marketCap']}\n"
                          f"Summary: {company_info['summary']}\n"
                          f"Website: {company_info['website']}\n"
                          f"Address: {company_info['address']}, {company_info['city']}, {company_info['state']}, {company_info['country']}\n"
                          f"Phone: {company_info['phone']}\n")

        return formatted_info
    except Exception as e:
        logger.error(f"Error formatting company info for Gemini: {e}")
        return "Error formatting company info."

def fetch_company_news_yahoo(symbol: str) -> List[Dict]:
    try:
        stock = yf.Ticker(symbol)
        news = stock.news
        if not news:
            raise ValueError(f"No news found for symbol: {symbol}")
        return news
    except Exception as e:
        logger.error(f"Failed to fetch news for {symbol} from Yahoo Finance: {e}")
        return []

def format_company_news_for_gemini(news: List[Dict]) -> str:
    try:
        if not news:
            return "No news available."

        formatted_news = "Latest company news:\n\n"
        for article in news:
            formatted_news += (f"Title: {article['title']}\n"
                               f"Publisher: {article['publisher']}\n"
                               f"Link: {article['link']}\n"
                               f"Published: {article['providerPublishTime']}\n\n")

        return formatted_news
    except Exception as e:
        logger.error(f"Error formatting company news for Gemini: {e}")
        return "Error formatting company news."

def send_to_gemini_for_summarization(content: str) -> str:
    try:
        unified_content = " ".join(content)
        prompt = f"Summarize the main points of this article.\n\n{unified_content}"
        response = llm.invoke(prompt)
        return response.content.strip()
    except Exception as e:
        logger.error(f"Error sending content to Gemini for summarization: {e}")
        return "Error summarizing content."

def answer_question_with_data(question: str, data: Dict) -> str:
    try:
        data_str = ""
        for key, value in data.items():
            data_str += f"{key}:\n{value}\n\n"

        prompt = (f"You are a financial advisor. Begin your answer by stating that and only give the answer after.\n"
                  f"Using the following data, answer this question: {question}\n\nData:\n{data_str}\n"
                  f"Make your answer in the best form and professional.\n"
                  f"Don't say anything about the source of the data.\n"
                  f"If you don't have the data to answer, say this data is not available yet. If the data is not available in the stock history data, say this was a weekend and there is no data for it.")
        response = llm.invoke(prompt)
        return response.content.strip()
    except Exception as e:
        logger.error(f"Error answering question with data: {e}")
        return "Error answering question."

def format_google_results(google_results: Optional[Dict], summarizer: DataSummarizer, query: str) -> str:
    try:
        if google_results:
            google_content = [summarizer.extract_content_from_item(item) for item in google_results.get('items', [])]
            formatted_google_content = "\n\n".join(google_content)
        else:
            formatted_google_content = "No additional news found through Google Search."

        snippet_query1 = f"{query} I want the answer only"
        snippet_query2 = f"{query}"

        google_snippet1 = summarizer.fetch_google_snippet(snippet_query1)
        google_snippet2 = summarizer.fetch_google_snippet(snippet_query2)

        google_snippet = google_snippet1 if google_snippet1 and google_snippet1 != "Snippet not found." else google_snippet2
        formatted_google_content += f"\n\nGoogle Snippet: {google_snippet}"

        return formatted_google_content
    except Exception as e:
        logger.error(f"Error formatting Google results: {e}")
        return "Error formatting Google results."

def calculate_metrics(stock_data: pd.DataFrame, summarizer: DataSummarizer, company_info: Dict) -> Dict[str, str]:
    try:
        moving_average = summarizer.calculate_moving_average(stock_data)
        rsi = summarizer.calculate_rsi(stock_data)
        ema = summarizer.calculate_ema(stock_data)
        bollinger_bands = summarizer.calculate_bollinger_bands(stock_data)
        macd = summarizer.calculate_macd(stock_data)
        volatility = summarizer.calculate_volatility(stock_data)
        atr = summarizer.calculate_atr(stock_data)
        obv = summarizer.calculate_obv(stock_data)
        yearly_summary = summarizer.calculate_yearly_summary(stock_data)
        ytd_performance = summarizer.calculate_ytd_performance(stock_data)

        eps = company_info.get('trailingEps', None)
        if eps:
            current_price = stock_data.iloc[-1]['close']
            pe_ratio = summarizer.calculate_pe_ratio(current_price, eps)
            formatted_metrics = {
                "Moving Average": moving_average.to_string(),
                "RSI": rsi.to_string(),
                "EMA": ema.to_string(),
                "Bollinger Bands": bollinger_bands.to_string(),
                "MACD": macd.to_string(),
                "Volatility": volatility.to_string(),
                "ATR": atr.to_string(),
                "OBV": obv.to_string(),
                "Yearly Summary": yearly_summary.to_string(),
                "YTD Performance": f"{ytd_performance:.2f}%",
                "P/E Ratio": f"{pe_ratio:.2f}"
            }
        else:
            formatted_metrics = {
                "Moving Average": moving_average.to_string(),
                "RSI": rsi.to_string(),
                "EMA": ema.to_string(),
                "Bollinger Bands": bollinger_bands.to_string(),
                "MACD": macd.to_string(),
                "Volatility": volatility.to_string(),
                "ATR": atr.to_string(),
                "OBV": obv.to_string(),
                "Yearly Summary": yearly_summary.to_string(),
                "YTD Performance": f"{ytd_performance:.2f}%"
            }

        return formatted_metrics
    except Exception as e:
        logger.error(f"Error calculating metrics: {e}")
        return {"Error": "Error calculating metrics"}

def prepare_data(formatted_stock_data: str, formatted_company_info: str, formatted_company_news: str,

                 summarized_google_content: str, formatted_metrics: Dict[str, str]) -> Dict[str, str]:
    collected_data = {
        "Formatted Stock Data": formatted_stock_data,
        "Formatted Company Info": formatted_company_info,
        "Formatted Company News": formatted_company_news,
        "Google Search Results": summarized_google_content,
        "Calculations": formatted_metrics
    }
    collected_data.update(formatted_metrics)
    return collected_data

def translate_response(response: str, target_language: str) -> str:
    try:
        prompt = f"Translate the following text to {target_language}: {response}"
        translation = llm.invoke(prompt)
        return translation.content.strip()
    except Exception as e:
        logger.error(f"Error translating response: {e}")
        return response  # Return the original response if translation fails

def main():
    print("Welcome to the Financial Data Chatbot. How can I assist you today?")

    summarizer = DataSummarizer()
    conversation_history = []

    while True:
        user_input = input("You: ")

        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("Goodbye! Have a great day!")
            break

        conversation_history.append(f"You: {user_input}")

        try:
            # Detect language, entity, translation, and stock ticker
            language, entity, translation, stock_ticker = detect_translate_entity_and_ticker(user_input)

            if language and entity and translation and stock_ticker:
                with ThreadPoolExecutor() as executor:
                    futures = {
                        executor.submit(fetch_stock_data_yahoo, stock_ticker): "stock_data",
                        executor.submit(fetch_company_info_yahoo, stock_ticker): "company_info",
                        executor.submit(fetch_company_news_yahoo, stock_ticker): "company_news",
                        executor.submit(fetch_current_stock_price, stock_ticker): "current_stock_price",
                        executor.submit(summarizer.google_search, f"{user_input} latest financial news"): "google_results"
                    }
                    results = {futures[future]: future.result() for future in as_completed(futures)}

                stock_data = results["stock_data"]
                formatted_stock_data = format_stock_data_for_gemini(stock_data)
                company_info = results["company_info"]
                formatted_company_info = format_company_info_for_gemini(company_info)
                company_news = results["company_news"]
                formatted_company_news = format_company_news_for_gemini(company_news)
                current_stock_price = results["current_stock_price"]

                google_results = results["google_results"]
                formatted_google_content = format_google_results(google_results, summarizer, user_input)
                summarized_google_content = send_to_gemini_for_summarization(formatted_google_content)

                formatted_metrics = calculate_metrics(stock_data, summarizer, company_info)

                collected_data = prepare_data(formatted_stock_data, formatted_company_info, formatted_company_news,
                                              summarized_google_content, formatted_metrics)
                collected_data["Current Stock Price"] = f"${current_stock_price:.2f}" if current_stock_price else "N/A"

                rag_response = get_answer(user_input)
                collected_data["RAG Response"] = rag_response

                conversation_history.append(f"RAG Response: {rag_response}")
                history_context = "\n".join(conversation_history)

                answer = answer_question_with_data(f"{history_context}\n\nUser's query: {user_input}", collected_data)

                if language != "English":
                    answer = translate_response(answer, language)

                print(f"\nBot: {answer}")
                conversation_history.append(f"Bot: {answer}")

            else:
                response = "I'm sorry, I couldn't process your request. Could you please rephrase?"
                print(f"Bot: {response}")
                conversation_history.append(f"Bot: {response}")

        except Exception as e:
            logger.error(f"An error occurred: {e}")
            response = "An error occurred while processing your request. Please try again later."
            print(f"Bot: {response}")
            conversation_history.append(f"Bot: {response}")

if __name__ == "__main__":
    main()