Spaces:
Build error
Build error
File size: 5,277 Bytes
c92867b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import glob
import os
from PIL import Image
import shutil
import concurrent.futures
import gradio as gr
import cv2
import re
import numpy as np
import torch
from lama_cleaner.helper import (
norm_img,
get_cache_path_by_url,
load_jit_model,
)
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config
LAMA_MODEL_URL = os.environ.get(
"LAMA_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
)
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
class LaMa(InpaintModel):
name = "lama"
pad_mod = 8
def init_model(self, device, **kwargs):
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
@staticmethod
def is_downloaded() -> bool:
return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL))
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W]
return: BGR IMAGE
"""
image = norm_img(image)
mask = norm_img(mask)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
inpainted_image = self.model(image, mask)
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
return cur_res
lama_model = LaMa("cuda" if torch.cuda.is_available() else "cpu")
config = Config(hd_strategy_crop_margin=196, ldm_steps=25, hd_strategy='Original', hd_strategy_crop_trigger_size=1280, hd_strategy_resize_limit=2048)
def remove_image_watermark(inputs):
alpha_channel = None
image, mask = inputs["image"], inputs["mask"]
if image.mode == "RGBA":
image = np.array(image)
alpha_channel = image[:, :, -1]
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
else:
image = np.array(image)
mask = cv2.threshold(np.array(mask.convert("L")), 127, 255, cv2.THRESH_BINARY)[1]
output = lama_model(image, mask, config)
output = cv2.cvtColor(output.astype(np.uint8), cv2.COLOR_BGR2RGB)
if alpha_channel is not None:
if alpha_channel.shape[:2] != output.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(output.shape[1], output.shape[0])
)
output = np.concatenate(
(output, alpha_channel[:, :, np.newaxis]), axis=-1
)
return Image.fromarray(output)
def process_image(mask_data, image_path):
output = remove_image_watermark({"image": Image.open(image_path), "mask": mask_data})
output_image_path = os.path.join('output_images', os.path.splitext(os.path.basename(image_path))[0] + '_inpainted' + os.path.splitext(image_path)[1])
output.save(output_image_path)
return output_image_path
def remove_video_watermark(sketch, images_path='frames', output_path='output_images'):
if os.path.exists('output_images'):
shutil.rmtree('output_images')
os.makedirs('output_images')
image_paths = glob.glob(f'{images_path}/*.*')
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
executor.map(lambda image_path: process_image(sketch["mask"], image_path), image_paths)
return gr.File.update(value=convert_frames_to_video('output_images'), visible=True), gr.Button.update(value='Done!')
def convert_video_to_frames(video):
if os.path.exists('input_video.mp4'):
os.remove('input_video.mp4')
# save the video to the current directory from temporary file
with open(video, 'rb') as f:
with open('input_video.mp4', 'wb') as f2:
f2.write(f.read())
# os.system(f"ffmpeg -i {video} input_video.mp4")
video_path = 'input_video.mp4'
if os.path.exists('frames'):
shutil.rmtree('frames')
os.makedirs('frames')
video_name = os.path.splitext(os.path.basename(video_path))[0]
vidcap = cv2.VideoCapture(video_path)
success, image = vidcap.read()
count = 1
while success:
cv2.imwrite(f"frames/{video_name}_{count}.jpg", image)
success, image = vidcap.read()
count += 1
return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True)
def convert_frames_to_video(frames_path):
if os.path.exists('output_video.mp4'):
os.remove('output_video.mp4')
img_array = []
filelist = glob.glob(f"{frames_path}/*.jpg")
# Sort frames by number
frame_numbers = [int(re.findall(r'\d+', os.path.basename(frame))[0]) for frame in filelist]
sorted_frames = [frame for _, frame in sorted(zip(frame_numbers, filelist), key=lambda pair: pair[0])]
for filename in sorted_frames:
img = cv2.imread(filename)
height, width, layers = img.shape
size = (width, height)
img_array.append(img)
out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
return 'output_video.mp4' |