File size: 5,518 Bytes
50695f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import glob
import os
import io
import ffmpeg
import requests
from PIL import Image
import shutil
import concurrent.futures
import gradio as gr
import cv2
import re

def process_image(mask_data, image_path):
    image = Image.open(image_path)
    image_data = io.BytesIO()
    image.save(image_data, format=image.format)
    image_data = image_data.getvalue()

    # Prepare form data
    form_data = {
            'ldmSteps': 25,
            'ldmSampler': 'plms',
            'zitsWireframe': True,
            'hdStrategy': 'Original',
            'hdStrategyCropMargin': 196,
            'hdStrategyCropTrigerSize': 1280,
            'hdStrategyResizeLimit': 2048,
            'prompt': '',
            'negativePrompt': '',
            'croperX': -24,
            'croperY': -23,
            'croperHeight': 512,
            'croperWidth': 512,
            'useCroper': False,
            'sdMaskBlur': 5,
            'sdStrength': 0.75,
            'sdSteps': 50,
            'sdGuidanceScale': 7.5,
            'sdSampler': 'pndm',
            'sdSeed': 42,
            'sdMatchHistograms': False,
            'sdScale': 1,
            'cv2Radius': 5,
            'cv2Flag': 'INPAINT_NS',
            'paintByExampleSteps': 50,
            'paintByExampleGuidanceScale': 7.5,
            'paintByExampleSeed': 42,
            'paintByExampleMaskBlur': 5,
            'paintByExampleMatchHistograms': False,
            'sizeLimit': 1024,
        }

    files_data = {
        'image': (os.path.basename(image_path), image_data),
        'mask': ('mask.png', mask_data)
    }

    response = requests.post('https://ahmedghani-lama-cleaner-lama.hf.space/inpaint', data=form_data, files=files_data)

    if response.headers['Content-Type'] == 'image/jpeg' or response.headers['Content-Type'] == 'image/png':
        output_image_path = os.path.join('output_images', os.path.splitext(os.path.basename(image_path))[0] + '_inpainted' + os.path.splitext(image_path)[1])
        with open(output_image_path, 'wb') as output_image_file:
            output_image_file.write(response.content)
    else:
        print(f"Error processing {image_path}: {response.text}")

def remove_watermark(sketch, images_path='frames', output_path='output_images'):
    if os.path.exists('output_images'):
        shutil.rmtree('output_images')
    os.makedirs('output_images')

    mask_data = io.BytesIO()
    sketch["mask"].save(mask_data, format=sketch["mask"].format)
    mask_data = mask_data.getvalue()

    image_paths = glob.glob(f'{images_path}/*.*')

    with concurrent.futures.ThreadPoolExecutor() as executor:
        executor.map(lambda image_path: process_image(mask_data, image_path), image_paths)

    return gr.Video.update(value=convert_frames_to_video('output_images'), visible=True), gr.Button.update(value='Done!')

# def convert_video_to_frames(video):
#     print(f" input video is : {video}")
#     if os.path.exists('input_video.mp4'):
#         os.remove('input_video.mp4')

#     ffmpeg.input(video).output('input_video.mp4').run()
#     video_path = 'input_video.mp4'
    
#     if os.path.exists('frames'):
#         shutil.rmtree('frames')
#     os.makedirs('frames')

#     video_name = os.path.splitext(os.path.basename(video_path))[0]  
#     ffmpeg.input(video_path).output(f'frames/{video_name}_%d.jpg', qscale=2).run()
#     return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True)

# def convert_frames_to_video(frames_path):
#     if os.path.exists('output_video.mp4'):
#         os.remove('output_video.mp4')
    
#     (
#         ffmpeg
#         .input(f'{frames_path}/*.jpg', pattern_type='glob', framerate=25)
#         .output('output_video.mp4')
#         .run()
#     )
#     return gr.Video.update(value='output_video.mp4', visible=True, interactive=True), gr.Button.update(interactive=False)


def convert_video_to_frames(video):
    if os.path.exists('input_video.mp4'):
        os.remove('input_video.mp4')

    os.system(f"ffmpeg -i {video} input_video.mp4")
    video_path = 'input_video.mp4'

    if os.path.exists('frames'):
        shutil.rmtree('frames')
    os.makedirs('frames')

    video_name = os.path.splitext(os.path.basename(video_path))[0]
    vidcap = cv2.VideoCapture(video_path)
    success, image = vidcap.read()
    count = 1
    while success:
        cv2.imwrite(f"frames/{video_name}_{count}.jpg", image)
        success, image = vidcap.read()
        count += 1

    return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True)

def convert_frames_to_video(frames_path):
    if os.path.exists('output_video.mp4'):
        os.remove('output_video.mp4')

    img_array = []
    filelist = glob.glob(f"{frames_path}/*.jpg")

    # Sort frames by number
    frame_numbers = [int(re.findall(r'\d+', os.path.basename(frame))[0]) for frame in filelist]
    sorted_frames = [frame for _, frame in sorted(zip(frame_numbers, filelist), key=lambda pair: pair[0])]

    for filename in sorted_frames:
        img = cv2.imread(filename)
        height, width, layers = img.shape
        size = (width, height)
        img_array.append(img)

    out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, size)

    for i in range(len(img_array)):
        out.write(img_array[i])
    out.release()

    return gr.Video.update(value='output_video.mp4', visible=True, interactive=True), gr.Button.update(interactive=False)