Spaces:
Build error
Build error
import glob | |
import os | |
import io | |
import ffmpeg | |
import requests | |
from PIL import Image | |
import shutil | |
import concurrent.futures | |
import gradio as gr | |
import cv2 | |
import re | |
def process_image(mask_data, image_path): | |
image = Image.open(image_path) | |
image_data = io.BytesIO() | |
image.save(image_data, format=image.format) | |
image_data = image_data.getvalue() | |
# Prepare form data | |
form_data = { | |
'ldmSteps': 25, | |
'ldmSampler': 'plms', | |
'zitsWireframe': True, | |
'hdStrategy': 'Original', | |
'hdStrategyCropMargin': 196, | |
'hdStrategyCropTrigerSize': 1280, | |
'hdStrategyResizeLimit': 2048, | |
'prompt': '', | |
'negativePrompt': '', | |
'croperX': -24, | |
'croperY': -23, | |
'croperHeight': 512, | |
'croperWidth': 512, | |
'useCroper': False, | |
'sdMaskBlur': 5, | |
'sdStrength': 0.75, | |
'sdSteps': 50, | |
'sdGuidanceScale': 7.5, | |
'sdSampler': 'pndm', | |
'sdSeed': 42, | |
'sdMatchHistograms': False, | |
'sdScale': 1, | |
'cv2Radius': 5, | |
'cv2Flag': 'INPAINT_NS', | |
'paintByExampleSteps': 50, | |
'paintByExampleGuidanceScale': 7.5, | |
'paintByExampleSeed': 42, | |
'paintByExampleMaskBlur': 5, | |
'paintByExampleMatchHistograms': False, | |
'sizeLimit': 1024, | |
} | |
files_data = { | |
'image': (os.path.basename(image_path), image_data), | |
'mask': ('mask.png', mask_data) | |
} | |
response = requests.post('https://ahmedghani-lama-cleaner-lama.hf.space/inpaint', data=form_data, files=files_data) | |
if response.headers['Content-Type'] == 'image/jpeg' or response.headers['Content-Type'] == 'image/png': | |
output_image_path = os.path.join('output_images', os.path.splitext(os.path.basename(image_path))[0] + '_inpainted' + os.path.splitext(image_path)[1]) | |
with open(output_image_path, 'wb') as output_image_file: | |
output_image_file.write(response.content) | |
else: | |
print(f"Error processing {image_path}: {response.text}") | |
def remove_watermark(sketch, images_path='frames', output_path='output_images'): | |
if os.path.exists('output_images'): | |
shutil.rmtree('output_images') | |
os.makedirs('output_images') | |
mask_data = io.BytesIO() | |
sketch["mask"].save(mask_data, format=sketch["mask"].format) | |
mask_data = mask_data.getvalue() | |
image_paths = glob.glob(f'{images_path}/*.*') | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
executor.map(lambda image_path: process_image(mask_data, image_path), image_paths) | |
return gr.Video.update(value=convert_frames_to_video('output_images'), visible=True), gr.Button.update(value='Done!') | |
def convert_video_to_frames(video): | |
if os.path.exists('input_video.mp4'): | |
os.remove('input_video.mp4') | |
os.system(f"ffmpeg -i {video} input_video.mp4") | |
video_path = 'input_video.mp4' | |
if os.path.exists('frames'): | |
shutil.rmtree('frames') | |
os.makedirs('frames') | |
video_name = os.path.splitext(os.path.basename(video_path))[0] | |
vidcap = cv2.VideoCapture(video_path) | |
success, image = vidcap.read() | |
count = 1 | |
while success: | |
cv2.imwrite(f"frames/{video_name}_{count}.jpg", image) | |
success, image = vidcap.read() | |
count += 1 | |
return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True) | |
def convert_frames_to_video(frames_path): | |
if os.path.exists('output_video.mp4'): | |
os.remove('output_video.mp4') | |
img_array = [] | |
filelist = glob.glob(f"{frames_path}/*.jpg") | |
# Sort frames by number | |
frame_numbers = [int(re.findall(r'\d+', os.path.basename(frame))[0]) for frame in filelist] | |
sorted_frames = [frame for _, frame in sorted(zip(frame_numbers, filelist), key=lambda pair: pair[0])] | |
for filename in sorted_frames: | |
img = cv2.imread(filename) | |
height, width, layers = img.shape | |
size = (width, height) | |
img_array.append(img) | |
out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, size) | |
for i in range(len(img_array)): | |
out.write(img_array[i]) | |
out.release() | |
return 'output_video.mp4' |