Editing-Tools / video_watermark_remover.py
ahmedghani's picture
big fixed
debbfad
raw
history blame
4.35 kB
import glob
import os
import io
import ffmpeg
import requests
from PIL import Image
import shutil
import concurrent.futures
import gradio as gr
import cv2
import re
def process_image(mask_data, image_path):
image = Image.open(image_path)
image_data = io.BytesIO()
image.save(image_data, format=image.format)
image_data = image_data.getvalue()
# Prepare form data
form_data = {
'ldmSteps': 25,
'ldmSampler': 'plms',
'zitsWireframe': True,
'hdStrategy': 'Original',
'hdStrategyCropMargin': 196,
'hdStrategyCropTrigerSize': 1280,
'hdStrategyResizeLimit': 2048,
'prompt': '',
'negativePrompt': '',
'croperX': -24,
'croperY': -23,
'croperHeight': 512,
'croperWidth': 512,
'useCroper': False,
'sdMaskBlur': 5,
'sdStrength': 0.75,
'sdSteps': 50,
'sdGuidanceScale': 7.5,
'sdSampler': 'pndm',
'sdSeed': 42,
'sdMatchHistograms': False,
'sdScale': 1,
'cv2Radius': 5,
'cv2Flag': 'INPAINT_NS',
'paintByExampleSteps': 50,
'paintByExampleGuidanceScale': 7.5,
'paintByExampleSeed': 42,
'paintByExampleMaskBlur': 5,
'paintByExampleMatchHistograms': False,
'sizeLimit': 1024,
}
files_data = {
'image': (os.path.basename(image_path), image_data),
'mask': ('mask.png', mask_data)
}
response = requests.post('https://ahmedghani-lama-cleaner-lama.hf.space/inpaint', data=form_data, files=files_data)
if response.headers['Content-Type'] == 'image/jpeg' or response.headers['Content-Type'] == 'image/png':
output_image_path = os.path.join('output_images', os.path.splitext(os.path.basename(image_path))[0] + '_inpainted' + os.path.splitext(image_path)[1])
with open(output_image_path, 'wb') as output_image_file:
output_image_file.write(response.content)
else:
print(f"Error processing {image_path}: {response.text}")
def remove_watermark(sketch, images_path='frames', output_path='output_images'):
if os.path.exists('output_images'):
shutil.rmtree('output_images')
os.makedirs('output_images')
mask_data = io.BytesIO()
sketch["mask"].save(mask_data, format=sketch["mask"].format)
mask_data = mask_data.getvalue()
image_paths = glob.glob(f'{images_path}/*.*')
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(lambda image_path: process_image(mask_data, image_path), image_paths)
return gr.Video.update(value=convert_frames_to_video('output_images'), visible=True), gr.Button.update(value='Done!')
def convert_video_to_frames(video):
if os.path.exists('input_video.mp4'):
os.remove('input_video.mp4')
os.system(f"ffmpeg -i {video} input_video.mp4")
video_path = 'input_video.mp4'
if os.path.exists('frames'):
shutil.rmtree('frames')
os.makedirs('frames')
video_name = os.path.splitext(os.path.basename(video_path))[0]
vidcap = cv2.VideoCapture(video_path)
success, image = vidcap.read()
count = 1
while success:
cv2.imwrite(f"frames/{video_name}_{count}.jpg", image)
success, image = vidcap.read()
count += 1
return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True)
def convert_frames_to_video(frames_path):
if os.path.exists('output_video.mp4'):
os.remove('output_video.mp4')
img_array = []
filelist = glob.glob(f"{frames_path}/*.jpg")
# Sort frames by number
frame_numbers = [int(re.findall(r'\d+', os.path.basename(frame))[0]) for frame in filelist]
sorted_frames = [frame for _, frame in sorted(zip(frame_numbers, filelist), key=lambda pair: pair[0])]
for filename in sorted_frames:
img = cv2.imread(filename)
height, width, layers = img.shape
size = (width, height)
img_array.append(img)
out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
return 'output_video.mp4'